Elliptic KZB equations via the universal vector extension

Tiago J. Fonseca
Unicamp, FAPESP

$$
\text { June } 2022 \text { - INI, Cambridge }
$$

- Joint work in progress with Nils Matthes.
- Study unipotent fundamental groups of punctured elliptic curves, e.g. $E \backslash\{O\}, E \backslash E[N], \ldots$

- Make a case for the universal vector extension of an elliptic curve as the right framework to study the unipotent de Rham fundamental group (Deligne, Enriquez-Etingof).
- Applications to algebraicity and rationality problems for the universal KZB equations.

Unipotent De Rham fundamental group

- X / k smooth variety over a field of characteristic zero.
- $U(X)$ category of unipotent flat vector bundles:

$$
(\mathcal{V}, \nabla), \quad \nabla: \mathcal{V} \rightarrow \Omega_{X / k}^{1} \otimes \mathcal{V}, \quad \nabla^{2}=0
$$

with

$$
0=\left(\mathcal{V}_{0}, \nabla_{0}\right) \subset\left(\mathcal{V}_{1}, \nabla_{1}\right) \subset \cdots \subset\left(\mathcal{V}_{n}, \nabla_{n}\right)=(\mathcal{V}, \nabla)
$$

such that

$$
\left(\mathcal{V}_{i}, \nabla_{i}\right) /\left(\mathcal{V}_{i-1}, \nabla_{i-1}\right) \cong\left(\mathcal{O}_{X} \otimes W_{i}, d_{X / k} \otimes i d\right)
$$

- $U(X)$ is Tannakian and every $x \in X(k)$ defines a fibre functor

$$
\omega_{x}: U(X) \rightarrow \operatorname{Vect}_{k}, \quad(\mathcal{V}, \nabla) \mapsto x^{*} \mathcal{V}
$$

- We set

$$
\pi_{1}^{d R}(X, x)=\underline{A u t}_{U(X)}^{\otimes}\left(\omega_{x}\right)
$$

Affine group scheme over k, pro-unipotent.

- Variant with two base points $b, x \in X(k)$:

$$
\pi_{1}^{d R}(X, b, x)=\underline{\operatorname{lsom}}_{U(X)}^{\otimes}\left(\omega_{b}, \omega_{x}\right)
$$

Example $\left(X=\mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}\right)$

$$
\mathcal{O}\left(\pi_{1}^{d R}(X, x)\right) \cong T^{c} H_{d R}^{1}(X)=\bigoplus_{n \geq 0} H_{d R}^{1}(X)^{\otimes n}
$$

where

$$
H_{d R}^{1}(X)=H^{0}\left(\mathbb{P}_{k}^{1}, \Omega^{1}(\log \{0,1, \infty\})\right)=k \frac{d z}{z} \oplus k \frac{d z}{1-z}
$$

Nice properties: independence of base points, simple poles.

- Every unipotent flat vector bundle on $X=\mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$ is canonically isomorphic to some

$$
\left(\mathcal{O}_{X} \otimes V, d-\frac{d z}{z} \otimes A_{0}-\frac{d z}{1-z} \otimes A_{1}\right)
$$

with $A_{0}, A_{1} \in E n d_{k}(V)$ "simultaneously nilpotent".

- Proof: consider the canonical extension

$$
\bar{\nabla}: \overline{\mathcal{V}} \rightarrow \Omega_{\mathbb{P}_{k}^{1}}^{1}(\log \{0,1, \infty\}) \otimes \overline{\mathcal{V}}
$$

and apply

$$
\left.\begin{array}{l}
H^{0}\left(\mathbb{P}_{k}^{1}, \mathcal{O}\right)=k \\
H^{1}\left(\mathbb{P}_{k}^{1}, \mathcal{O}\right)=E x t^{1}(\mathcal{O}, \mathcal{O})=0
\end{array}\right\} \text { Deligne's good conditions }
$$

Cette dernière hypothèse, très restrictive, est vérifiée si X est rationnelle.

- No hope for an elliptic curve: $H^{1}(E, \mathcal{O}) \neq 0$.
- Let \mathcal{V} be the vector bundle on $E^{a n}=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ given by

$$
(m+n \tau) \cdot\left(v_{1}, v_{2}, z\right)=\left(v_{1}+n v_{2}, v_{2}, z+m+n \tau\right)
$$

- A splitting

$$
0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{V} \longleftrightarrow \mathcal{O} \longrightarrow 0
$$

corresponds to a function $r: E^{\text {an }} \rightarrow \mathbb{C}$ satisfying

$$
r(z+m+n \tau)=r(z)+n
$$

- No such holomorphic r.
- Real-analytic: $r(z)=\operatorname{Im}(z) / \operatorname{Im}(\tau)$ (cf. Brown-Levin)

> 3.5. Massey products on $\mathcal{E}^{(n)}$. We use the Eisenstein-Kronecker series F to write down some explicit one-forms on $\mathcal{E}^{(n)}$. First consider a single elliptic curve \mathcal{E}^{\times}with coordinate ξ as above. Write $\xi=s+r \tau$, where $r, s \in \mathbb{R}$ and τ is fixed, and let $\omega=d \xi$ and $\nu=2 \pi i d r$. The classes $[\omega],[\nu]$ form a basis for $H^{1}\left(\mathcal{E}^{\times} ; \mathbb{C}\right)$.
> Lemma 6. The form $\Omega(\xi ; \alpha)=\mathbf{e}(\alpha r) F(\xi ; \alpha) d \xi$ is invariant under elliptic transformations $\xi \mapsto \xi+\tau$ and $\xi \mapsto \xi+1$, and satisfies $d \Omega(\xi ; \alpha)=\nu \alpha \wedge \Omega(\xi ; \alpha)$.

- How to algebraize? Consider \mathbb{C}^{2} with coordinates (z, r), and lift the action of $\mathbb{Z}+\mathbb{Z} \tau$ by

$$
(m+n \tau) \cdot(z, r)=(z+m+n \tau, r+n)
$$

- The quotient $\mathbb{C}^{2} /(\mathbb{Z}+\mathbb{Z} \tau)$ has a natural structure of algebraic variety such that the projection on the first coordinate

$$
\mathbb{C}^{2} /(\mathbb{Z}+\mathbb{Z} \tau) \rightarrow \mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)
$$

is algebraic!

- In fact,

$$
\mathbb{C}^{2} /(\mathbb{Z}+\mathbb{Z} \tau) \cong H_{d R}^{1}\left(E^{a n}\right) / H^{1}\left(E^{a n}, \mathbb{Z}\right) \cong H^{1}\left(E^{a n}, \mathbb{C}^{\times}\right)
$$

classifies holomorphic flat line bundles on $E^{a n}$.

- The universal vector extension of E is the commutative group scheme E^{\natural} classifying (algebraic) flat line bundles on E.
- Rosenlicht, Grothendieck, Mazur-Messing:

$$
\begin{gathered}
0 \longrightarrow \Omega^{1}(E) \longrightarrow 0 \\
{[(\mathcal{L}, \nabla)] \longmapsto\left[\begin{array}{l}
\text { 品 } \longrightarrow
\end{array}\right]} \\
\omega \longmapsto(\mathcal{O}], d+\omega)]
\end{gathered}
$$

is universal for extensions of E by vector groups.

- Laumon, Coleman: if k has characteristic zero, then $H^{0}\left(E^{\natural}, \mathcal{O}\right)=k$ and $H^{1}\left(E^{\natural}, \mathcal{O}\right)=0$.

Let $Z \subset E[N](k)$, and set $D:=\pi^{-1}(Z) \subset E^{\natural}$.
Theorem (F.-Matthes; cf. Enriquez-Etingof)
There is a canonical decomposition

$$
\Gamma\left(E^{\natural}, \Omega^{1}(\log D)\right)=\Gamma\left(E^{\natural}, \Omega^{1}\right) \oplus K^{(1)} \oplus K^{(2)} \oplus \cdots
$$

where $K^{(n)}$ are k-subspaces uniquely determined by:

1. $d K^{(n)}=\Gamma\left(E^{\natural}, \Omega^{1}\right) \wedge K^{(n-1)}$, where $K^{(0)}:=\pi^{*} \Gamma\left(E, \Omega^{1}\right)$,
2. $K^{(n)} \wedge K^{(0)}=0$,
3. $\operatorname{Res}_{D}\left(K^{(n)}\right)$ has degree $n-1$.

We can find $\nu, \omega^{(0)}, \omega_{P}^{(1)}, \omega_{P}^{(2)}, \ldots$ such that

$$
\Gamma\left(E^{\natural}, \Omega^{1}\right)=k \nu \oplus k \omega^{(0)}, \quad K^{(n)}=\bigoplus_{P \in Z} k \omega_{P}^{(n)}
$$

and $d \omega_{P}^{(n)}=\nu \wedge \omega_{P}^{(n-1)}, \omega_{P}^{(n)} \wedge \omega^{(0)}=0, \operatorname{Res}_{D}\left(\omega_{P}^{(n)}\right)=t_{P}^{n-1} /(n-1)!$.

Corollary

Every unipotent flat connection on $E^{\natural} \backslash D$ is isomorphic to

$$
\left(\mathcal{O} \otimes V, d-\nu \otimes A-\omega^{(0)} \otimes B-\sum_{n \geq 1} \sum_{P \in Z} \omega_{P}^{(n)} \otimes a d_{A}^{n-1}\left(C_{P}\right)\right)
$$

with $A, B, C_{P} \in E_{n d}(V)$ "simultaneously nilpotent", and $\sum_{P \in Z} C_{P}=[A, B]$.

Theorem (F.-Matthes)
For every $x \in\left(E^{\natural} \backslash D\right)(k)$, there are canonical isomorphism

$$
\begin{aligned}
\mathcal{O}\left(\pi_{1}^{d R}\left(E^{\natural} \backslash D, x\right)\right) & \cong H^{0}\left(B\left(\Gamma\left(E^{\natural}, \Omega^{\bullet}(\log D)\right)\right)\right. \\
& \cong T^{c} \Gamma\left(E^{\natural}, \Omega^{1}(\log D)\right)^{d=0}
\end{aligned}
$$

Note: if $Q=\pi(x)$, then $\pi_{1}^{d R}\left(E^{\natural} \backslash D, x\right) \cong \pi_{1}^{d R}(E \backslash Z, Q)$, and $\Gamma\left(E^{\natural}, \Omega^{1}(\log D)\right)^{d=0} \cong H_{d R}^{1}(E \backslash Z)$.

Universal elliptic KZB equations

- Differential equations satisfied by multiple elliptic polylogarithms. Calaque-Enriquez-Etingof, Levin-Racinet, Hain, Luo.

$$
\begin{aligned}
& \text { 9.2. The formula. The connection is defined by a } 1 \text {-form } \\
& \qquad \omega \in \Omega^{1}(\mathbb{C} \times \mathbf{h}, \log \Lambda) \otimes \text { End } \mathbf{p} \text {. } \\
& \text { via the formula } \\
& \qquad \nabla f=d f+\omega f \\
& \text { where } f: \mathbb{C} \times \mathbf{h} \rightarrow \mathbf{p} \text { is a (locally defined) section of }(9.1) \text {. Specifically, } \\
& \qquad \omega=\frac{1}{2 \pi i} d \tau \otimes \mathbf{a} \frac{\partial}{\partial \mathbf{t}}+\psi+\nu \\
& \text { where } \\
& \qquad \psi=\sum_{m \geq 1}\left(\frac{(2 \pi i)^{2 m+1}}{(2 m)!} G_{2 m+2}(\tau) d \tau \otimes \sum_{j+k=2 m+1}^{j, k>0}(-1)^{j}\left[\operatorname{ad}_{\mathbf{t}}^{j}(\mathbf{a}), \mathrm{ad}_{\mathbf{t}}^{k}(\mathbf{a})\right] \frac{\partial}{\partial \mathbf{a}}\right) \\
& \text { and } \\
& \qquad \nu=\mathbf{t} F(\xi, \mathbf{t}, \tau) \cdot \mathbf{a} d \xi+\frac{1}{2 \pi i}\left(\frac{1}{\mathbf{t}}+\mathbf{t} \frac{\partial F}{\partial \mathbf{t}}(\xi, \mathbf{t}, \tau)\right) \cdot \mathbf{a} d \tau .
\end{aligned}
$$

- "Higher level" version: Calaque-Gonzales, Hopper.
- Algebraicity results: Hain, Luo.

Purely algebraic construction of universal KZB:

- Universal vector extension behaves well in families: given $p: E \rightarrow S$, get $f: E^{\natural} \rightarrow S$.
- All of the above results generalize to families and are compatible with base change. "Relative fundamental Hopf algebra":

$$
\mathcal{H}:=H^{0}\left(B\left(f_{*} \Omega_{E^{\natural} / S}^{\bullet}(\log D)\right) .\right.
$$

Locally over S :

$$
\mathcal{H}^{\vee}=\mathcal{O}_{S}\left\langle\left\langle a, b, c_{P}: P \in Z\right\rangle\right\rangle /\left\langle\sum_{P \in Z} c_{P}-[a, b]\right\rangle
$$

- Elliptic KZB (vertical direction): integrable S-connection

$$
\begin{aligned}
& \nabla: f^{*} \mathcal{H}^{\vee} \rightarrow \Omega_{E^{\natural} / S}^{1}(\log D) \hat{\otimes} f^{*} \mathcal{H}^{\vee}, \quad \nabla=d-\Omega \\
& \Omega=\nu \otimes a+\omega^{(0)} \otimes b+\sum_{n \geq 1} \sum_{P \in Z} \omega_{P}^{(n)} \otimes a d_{a}^{n-1}\left(c_{P}\right)
\end{aligned}
$$

- Assume S is a smooth k-scheme.
- Universal KZB (vert. + hor.): integrable k-connection

$$
\nabla_{K Z B}: f^{*} \mathcal{H}^{\vee} \rightarrow \Omega_{E^{\natural} / k}^{1}(\log D) \hat{\otimes} f^{*} \mathcal{H}^{\vee}
$$

lifting ∇. "Isomonodromic deformation".

- Key: the universal vector extension is a crystal. Canonical splitting (with integrability condition) of

$$
0 \longrightarrow f^{*} \Omega_{S / k}^{1} \longrightarrow \Omega_{E^{\natural} / k}^{1} \longrightarrow \Omega_{E^{\natural} / S}^{1} \longrightarrow 0
$$

or equivalently of

$$
0 \longrightarrow \Omega_{S / k}^{1} \longrightarrow f_{*} \Omega_{E^{\natural} / k}^{1} \longrightarrow f_{*} \Omega_{E^{\natural} / S}^{1}
$$

Theorem (F.-Matthes)

The sequence

$$
0 \longrightarrow \Omega_{S / k}^{1} \longrightarrow f_{*} \Omega_{E^{\sharp} / k}^{1}(\log D) \longrightarrow f_{*} \Omega_{E^{\natural} / S}^{1}(\log D) \longrightarrow 0
$$

is exact and canonically split.

- Get "canonical lifts" of logarithmic forms. Example:

$$
\widetilde{\omega}^{(1)}=\left(\frac{\theta_{\tau}^{\prime}(z)}{\theta_{\tau}(z)}+2 \pi i r\right) d z+\frac{1}{2 \pi i}\left(\frac{1}{2} \frac{\theta_{\tau}^{\prime \prime}(z)}{\theta_{\tau}(z)}-\frac{1}{6} \frac{\theta_{\tau}^{\prime \prime \prime}(0)}{\theta_{\tau}^{\prime}(0)}-\frac{(2 \pi i r)^{2}}{2}\right) d \tau
$$

- Construct "Gauss-Manin connection for iterated integrals":

$$
\nabla_{G M}: \mathcal{H} \rightarrow \Omega_{S / k}^{1} \otimes \mathcal{H}
$$

- $\nabla_{K Z B}:=f^{*} \nabla_{G M}^{\vee}-\widetilde{\Omega}$.

