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I Define an open U ⊂ SL2(C) by
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and set
X = SL2(Z)\U
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Theorem (uniformization)
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Proof.
Consider the holomorphic map
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)
where τ = b/d and E2,E4,E6 : H→ C are normalized Eisenstein
series.



Moduli point of view (Movasati)

E complex elliptic curve  H1
dR(E ) 2-dim C-vector space with:

I symplectic pairing 〈 , 〉 : H1
dR(E )× H1

dR(E )→ C

I 1-dim subspace H0(E ,Ω1) ⊂ H1
dR(E )

Symplectic-Hodge basis of H1
dR(E ): b = (ω, η) such that

ω ∈ H0(E ,Ω1) and 〈ω, η〉 = 1

Theorem
X is biholomorphic to the moduli space of elliptic curves with a SH
basis (E , b) and v gets identified with the unique vector field
satisfying

∇vω
univ = ηuniv and ∇vη

univ = 0

where ∇ denotes the Gauss-Manin connection.



Gauss-Manin connection: ∫
γ
∇α = d

∫
γ
α

Proof of the theorem.
Consider

[(E , b)] 7−→

[( ∫
γ2
η 1

2πi

∫
γ2
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γ1
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2πi

∫
γ1
ω

)]
∈ SL2(Z)\SL2(C)

where (γ1, γ2) is a oriented basis of H1(E ,Z).

Remark
The identification of the moduli space with A3 \ V (x32 − x23 ) is
actually purely algebraic. Also works over Q, or even Z[1/6].



(A, λ) principally polarized abelian variety of dimension g  
H1
dR(A) 2g -dim vector space with:

I symplectic pairing 〈 , 〉λ on H1
dR(A)

I Lagrangian subspace H0(A,Ω1) ⊂ H1
dR(A)

Symplectic-Hodge basis of H1
dR(A): b = (ω1, . . . , ωg , η1, . . . , ηg )

such that

ωi ∈ H0(A,Ω1) and b is symplectic wrt 〈 , 〉λ

Theorem
The moduli problem of principally polarized abelian varieties of
dimension g with a SH basis is representable by a smooth
quasi-affine variety Bg of dimension 2g2 + g .



Definition
The higher Ramanujan foliation on Bg is the rank g(g + 1)/2
subbundle Rg ⊂ TBg of the vector fields v such that ∇vη

univ
i = 0

for every i .

I There is a canonical holomorphic map tangent to Rg

generalizing (E2,E4,E6):

ϕg : Hg −→ Bg

Its “coordinates” are “Siegel quasimodular forms”.

I Classical result: E2, E4, E6 are algebraically independent.

Theorem
Every analytic leaf of Rg is Zariski-dense in Bg .



Theorem (Nesterenko ’96)

π, eπ, and Γ(1/4) are algebraically independent over Q.

Proof: interpret as values of Eisenstein series and use Ramanujan’s
equations.

Conjecture

Three at least of the four numbers

π, eπ
√
5, Γ(1/5), Γ(2/5)

are algebraically independent over Q.

Idea: approach it through ϕg and Rg?
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