Higher Ramanujan Foliations

Tiago J. Fonseca

University of Oxford

Virtual School 'Geometry and Dynamics of Foliations' CIRM 2020 Halphen:

$$\frac{d(u_1+u_2)}{dt} = u_1u_2, \qquad \frac{d(u_2+u_3)}{dt} = u_2u_3, \qquad \frac{d(u_3+u_1)}{dt} = u_3u_1$$

Chazy:

$$y''' = 2y'y'' - 3(y')^2$$

Ramanujan:

▶ Define an open $U \subset SL_2(\mathbb{C})$ by

and set

$$X = \operatorname{SL}_2(\mathbb{Z}) \setminus U$$

Let v be the vector field on X induced by

$$\frac{1}{2\pi i} \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) \in \mathfrak{sl}_2(\mathbb{C})$$

Theorem (uniformization) (X, v) is biholomorphic to

$$\left(\mathbb{C}^3\setminus V(x_2^3-x_3^2), \frac{x_1^2-x_2}{12}\frac{\partial}{\partial x_1}+\frac{x_1x_2-x_3}{3}\frac{\partial}{\partial x_2}+\frac{x_1x_3-x_2^2}{2}\frac{\partial}{\partial x_3}\right)$$

Proof. Consider the holomorphic map

$$U \longrightarrow \mathbb{C}^{3}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \left(\frac{1}{d^{2}}E_{2}(\tau) - \frac{12}{2\pi i}\frac{c}{d}, \frac{1}{d^{4}}E_{4}(\tau), \frac{1}{d^{6}}E_{6}(\tau)\right)$$

where $\tau = b/d$ and $E_2, E_4, E_6 : \mathbb{H} \to \mathbb{C}$ are normalized Eisenstein series.

Moduli point of view (Movasati)

- *E* complex elliptic curve $\rightsquigarrow H^1_{dR}(E)$ 2-dim \mathbb{C} -vector space with:
 - ▶ symplectic pairing $\langle , \rangle : H^1_{dR}(E) \times H^1_{dR}(E) \to \mathbb{C}$
 - ► 1-dim subspace $H^0(E, \Omega^1) \subset H^1_{dR}(E)$

Symplectic-Hodge basis of $H^1_{\mathrm{dR}}(E)$: $b = (\omega, \eta)$ such that

$$\omega \in H^0(E, \Omega^1)$$
 and $\langle \omega, \eta
angle = 1$

Theorem

X is biholomorphic to the moduli space of elliptic curves with a SH basis (E, b) and v gets identified with the unique vector field satisfying

$$abla_{\mathbf{v}}\omega^{\mathit{univ}}=\eta^{\mathit{univ}}$$
 and $abla_{\mathbf{v}}\eta^{\mathit{univ}}=0$

where ∇ denotes the Gauss-Manin connection.

Gauss-Manin connection:

$$\int_{\gamma} \nabla \alpha = \mathbf{d} \int_{\gamma} \alpha$$

Proof of the theorem. Consider

$$[(E,b)]\longmapsto \left[\left(\begin{array}{cc} \int_{\gamma_2} \eta & \frac{1}{2\pi i} \int_{\gamma_2} \omega \\ \int_{\gamma_1} \eta & \frac{1}{2\pi i} \int_{\gamma_1} \omega \end{array} \right) \right] \in \mathrm{SL}_2(\mathbb{Z}) \backslash \mathrm{SL}_2(\mathbb{C})$$

where (γ_1, γ_2) is a oriented basis of $H_1(E, \mathbb{Z})$.

Remark

The identification of the moduli space with $\mathbb{A}^3 \setminus V(x_2^3 - x_3^2)$ is actually purely algebraic. Also works over \mathbb{Q} , or even $\mathbb{Z}[1/6]$.

 (A, λ) principally polarized abelian variety of dimension $g \rightsquigarrow H^1_{dR}(A)$ 2g-dim vector space with:

- symplectic pairing $\langle , \rangle_{\lambda}$ on $H^1_{dR}(A)$
- ► Lagrangian subspace $H^0(A, \Omega^1) \subset H^1_{dR}(A)$

Symplectic-Hodge basis of $H^1_{dR}(A)$: $b = (\omega_1, \dots, \omega_g, \eta_1, \dots, \eta_g)$ such that

$$\omega_i \in H^0(A, \Omega^1)$$
 and b is symplectic wrt $\langle \ ,
angle_\lambda$

Theorem

The moduli problem of principally polarized abelian varieties of dimension g with a SH basis is representable by a smooth quasi-affine variety B_g of dimension $2g^2 + g$.

Definition The higher Ramanujan foliation on B_g is the rank g(g+1)/2subbundle $\mathcal{R}_g \subset TB_g$ of the vector fields v such that $\nabla_v \eta_i^{univ} = 0$ for every i.

There is a canonical holomorphic map tangent to R_g generalizing (E₂, E₄, E₆):

$$\varphi_{g}: \mathbb{H}_{g} \longrightarrow B_{g}$$

Its "coordinates" are "Siegel quasimodular forms".

▶ Classical result: E_2 , E_4 , E_6 are algebraically independent.

Theorem

Every analytic leaf of \mathcal{R}_g is Zariski-dense in B_g .

Theorem (Nesterenko '96)

 $\pi,~e^{\pi},~and~\Gamma(1/4)$ are algebraically independent over $\mathbb{Q}.$

Proof: interpret as values of Eisenstein series and use Ramanujan's equations.

Conjecture

Three at least of the four numbers

$$\pi, e^{\pi\sqrt{5}}, \Gamma(1/5), \Gamma(2/5)$$

are algebraically independent over \mathbb{Q} .

Idea: approach it through φ_g and \mathcal{R}_g ?

 T. J. Fonseca, Higher Ramanujan Equations and Periods of Abelian Varieties, to appear in Memoirs of the AMS.

J. Cao, H. Movasati, S-T. Yau, Gauss-Manin Connection in Disguise: Genus Two Curves, preprint 2019.