From transcendental numbers to higher Ramanujan equations

Tiago J. Fonseca
University of Oxford

Seminário Fique em Casa de Geometria Algébrica June 2020

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
\frac{\pi}{2}=\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x
\end{gathered}
$$

Theorem (Lindemann 1882)

π is transcendental.

Ueber die Zahl $\boldsymbol{\pi}^{*}$)
Von
F. Lindmann in Freiburg i. Br.

Bei der Vergeblichkeit der so ausserordentlich zahlreichen Versuche ${ }^{*}$), die Quadratur des Kreises mit Cirkel und Lineal anszuführen, hält man allgemein die Lösung der bezeichneten Aufgabe für unmöglich; es fehlte aber bisher ein Beweis dieser Unmöglichkeit; nur die Irrationalität von π und von π^{2} ist festgestellt. Jede mit Cirkel und Lineal ausfuhrbare Construction lässt sich mittelst algebraischer Einkleidung zurückfübren auf die Lösung von linearen und quadratischen Gleichungen, also auch auf die Lősung einer Reihe von quadratischen Gleichungen, deren erste rationale Zahlen zu Coefficienten hat, während die Coefficienten jeder folgenden nur solche irrationale Zahlen enthalten, die durch Auflösung der vorhergehenden Gleichungen eingefuhrt sind. Die Schlussgleichung wird also durch wiederholtes Quadriren übergefuhrt werden können in eine Gleichung geraden Grades, deren Coefficienten rationale Zahlen sind. Man wird sonach die Unmöglichkeit der Quadratur des Kreises darthun, wenn man nachweist, dass die Zah π tiberhaupt nicht Wurzel einer algebraischen Glëchung irgend welchen Grades mit rationalen Coefficienten sein kann. Den dafür nöthigen Beweis zu erbringen, ist im Folgenden versucht worden.

$$
\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=1
$$

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=1 \\
& \frac{\Omega}{2}=\int_{0}^{1} \frac{1}{\sqrt{1-r^{4}}} d r=\frac{\Gamma(1 / 4)^{2}}{4 \sqrt{2 \pi}}
\end{aligned}
$$

Theorem (Schneider 1937)
 Ω is transcendental.

Arithmetische Untersuchungen elliptischer Integrale.

Von
Theodor Schneider io Frankfart a. M.
Im Jahre 1931 zeigte C. L. Siegel ${ }^{1}$), da $ß$ die GröBen $g_{3}, g_{3}, \omega_{1}, \omega_{1}$ nicht sämtlich algebraisch sind, wobei ω_{1} und ω_{1} die Perioden der durch g_{1} und g_{2} bestimmten Weierstraßschen g-Funktion seien. Mit einer ähnlichen Methode bewies ich im Februar $1934{ }^{1}$), daß auch $g_{2}, g_{8}, \omega, \eta$ nicht alle algebraisch sind, wean ω und η demselben Integrationsweg entsprechen. Im zweiton Teil meiner Dissertation ${ }^{\text { }}$) führte ich den Beweis des Satzes: Besteht zwischen β und $\boldsymbol{\tau}=\frac{\omega_{M}}{\omega_{2}}$ keine lineare Beziehung mit rationalen Koeffivienten, so ist mindestens eine der GröBen $g_{2}, g_{3}, \tau, \beta$ und $\wp\left(\omega_{1} \beta\right)$ transzendent. Auf Grund anderer Beweisprinzipien gelangte in Vorjahre G. Pólys ${ }^{4}$) zu der Aussage: Wenn h eine komplexe Zahl vom Abeolutbetrage <1 ist, so sind aicht alle fünt Zahlen
$\sum_{r} \frac{r h^{2 r}}{1-h^{2 F}}, \quad \sum_{r} \frac{r^{2} h^{2+}}{1-h^{2 F}}, \quad \sum_{r} \frac{r^{0} h^{2 r}}{1-h^{2+}}$,

algebraisch. Diese ist wieder enthalten in dem vor einigen Monaten von P. Popken und K. Mahler ${ }^{5}$) bewiesenen Satz, daß auch die drei Größen $\frac{\omega^{2} \eta}{n^{2}}, \frac{\omega^{6} g_{4}}{\pi^{4}}, \frac{\omega^{6} g_{4}}{n^{4}}$ nicht sümtlieh algebraisch sind. Alle vorstohenden Einzel-

Is Ω, or $\Gamma(1 / 4)$, algebraically independent to π ?
Recall: $\alpha, \beta \in \mathbb{C}$ are algebraically independent (over \mathbb{Q}) if there exists no
non-zero $P \in \mathbb{Q}[X, Y]$ such that $P(\alpha, \beta)=0$.

Algebraic Independence of Values of Exponential and Elliptic Functions

Theorem (Chudnovsky 1976)
π and $\Gamma(1 / 4)$ are algebraically independent.
Also true for π and $\Gamma(1 / 3)$.
G. V. Chudnovsky
0. Only one Congress separates us from 1982, the centenary of Lindemann's theorem on the transcendence of π. Many things have changed since 1882 in Transcendence Theory. For the last years especially there has been considerable progress in understanding the fundamental problems of Transcendence Theory. Although the analytic part of proofs looks like 40 years ago the algebraic arguments have changed completely. Now Transcendence Theory uses a lot of modern mathematics (algebra, algebraic geometry, complex analysis) and also has its fields of application. We'll try to describe the new situation with the theory of transcendence and algebraic independence for the exponential, elliptic and Abelian functions.
Let $\varphi(z)$ denote the Weierstrass elliptic function with algebraic invariants g_{2}, g_{a} and $\zeta(z)$ the ζ-function, $\zeta^{\prime}(z)=-\xi(z)$. Let ω, η denote any pair of periods and quasi-periods of $\rho(z): \zeta(z+\omega)=\zeta(z)+\eta$, and let ω_{i}, η_{i} denote fundamental periods and quasi-periods of $\varphi(z)$. We call point u as algebraic for $\varphi(z)$ if $\rho(u) \in \bar{Q}$. For a finite set $S \subset C$, \# S denotes the maximal number of algebraically independent (a.i.) elements in S.

Open problem: are $\pi, \Gamma(1 / 5), \Gamma(2 / 5)$ algebraically independent?

- A. Grothendieck, On the de Rham cohomology of algebraic varieties. Publications Mathématiques de l'IHES, tome 29 (1966)

ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES ${ }^{(1)}$
by A. GROTHENDIEGK
... In connection with Hartshorne's seminar on duality, I had a look recently at your joint paper with Hodge on "Integrals of the second kind " ${ }^{\text {a }}$). As Hironaka has proved the resolution of singularities (${ }^{5}$), the "Conjecture C " of that paper (p. 8t) holds true, and hence the results of that paper which depend on it. Now it occurred to me that in this paper, the whole strength of the "Conjecture C " has not been fully exploited, namely that the theory of " integrals of second kind" is essentially contained in the following very simple

Theorem 1. - Let X be an affine algebraic scheme over the field \mathbf{C} of complex numbers; assume X regular (i.e. " non singular "). Then the complex cohomology $\mathrm{H}^{*}(\mathrm{X}, \mathbf{C})$ can be calculated as the cohomology of the algebraic De Rham complex (i.e. the complex of differential forms on X which are "rational and everywhere defined").

This theorem had been checked previously by Hochschild and Kostant when X is an affine homogeneous space under an algebraic linear group, and I think they also raised the question as for the general validity of the result stated in theorem 1 .

It will be convenient, for further applications, to give a slightly more general formulation, as follows. If X is any prescheme locally of finite type over a field k, and " smooth " over k, we can consider the complex of sheaves $\Omega_{x / /}^{*}$ of regular differentials on X , the differential operator being of course the exterior differential. Let us consider the hypercohomology
(I)

$$
\mathrm{H}^{*}(\mathrm{X})=\mathbf{H}^{*}\left(\mathrm{X}, \Omega_{\mathrm{x} / \beta}^{*}\right)
$$

which we may call the " De Rham cohomology " of X , in contrast to the " Hodge cohomology "
(2) $\quad \mathrm{H}^{*}\left(\mathrm{X}, \Omega_{\mathrm{Z}, k}^{+}\right)=\underset{p, \mathrm{Y}}{\amalg} \mathrm{H}^{\mathrm{v}}\left(\mathrm{X}, \Omega_{\mathrm{k}, k}\right)$,

[^0]$X_{/ \mathbb{Q}}$ smooth algebraic variety

- $H_{\mathrm{dR}}^{n}(X)=\mathbb{H}^{n}\left(\Omega_{X / \mathbb{Q}}^{\bullet}\right)$
- $H_{\mathrm{B}}^{n}(X)=H_{n}(X(\mathbb{C}), \mathbb{Q})^{\vee}$
comp : $H_{\mathrm{dR}}^{n}(X) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} H_{\mathrm{B}}^{n}(X) \otimes_{\mathbb{Q}} \mathbb{C}$

$$
[\alpha] \mapsto\left([\gamma] \mapsto \int_{\gamma} \alpha\right)
$$

Period matrix:

$$
P=\left(\int_{\gamma_{j}} \alpha_{i}\right)_{i, j}
$$

[α_{i}] and $\left[\gamma_{j}\right]$ bases defined over \mathbb{Q}

Example (Elliptic curves)

Let $E \subset \mathbb{P}^{2}$ be given by $y^{2} z=4 x^{3}-u x z^{2}-v z^{3}$, with $u, v \in \mathbb{Q}$, satisfying $u^{3}-27 v^{2} \neq 0$.
From

$$
H_{\mathrm{dR}}^{1}(E)=H_{\mathrm{dR}}^{1}\left(E^{\mathrm{aff}}\right), \quad E^{\text {aff }}=E \backslash\{O\}
$$

we obtain

$$
H_{\mathrm{dR}}^{1}(E)=\mathbb{Q} \cdot \underbrace{\left[\frac{d x}{y}\right]}_{\omega} \oplus \mathbb{Q} \cdot \underbrace{\left[x \frac{d x}{y}\right]}_{\eta}
$$

$$
P=\left(\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right)=\left(\begin{array}{ll}
\int_{\gamma_{1}} \omega & \int_{\gamma_{1}} \eta \\
\int_{\gamma_{2}} \omega & \int_{\gamma_{2}} \eta
\end{array}\right)
$$

- Legendre: $\omega_{1} \eta_{2}-\omega_{2} \eta_{1}=2 \pi i$
- In the case $u=4, v=0$, we have

$$
\omega_{1}=\Omega, \omega_{2}=i \Omega
$$

Crucial remark: algebraic cycles induce relations between periods!

Example (Complex multiplication)

Let $\varphi \in \operatorname{End}\left(E_{\mathbb{C}}\right) \backslash \mathbb{Z}$ (corresponds to 1-cycle in $E \times E$).
From

$$
\begin{array}{r}
\varphi_{\mathrm{B}}^{*} \circ \mathrm{comp}=\mathrm{comp} \circ \varphi_{\mathrm{dR}}^{*} \\
\underbrace{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}_{\in \mathrm{GL}_{2}(\mathbb{Q})}\left(\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right)=\left(\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)
\end{array}
$$

we get

$$
\frac{a \omega_{1}+b \omega_{2}}{c \omega_{1}+d \omega_{2}}=\frac{\omega_{1}}{\omega_{2}} \Longrightarrow \frac{\omega_{1}}{\omega_{2}} \in \overline{\mathbb{Q}}
$$

Conjecture (Grothendieck)

Every algebraic relation between periods is of motivic origin.
$\left({ }^{10}\right)$ In fact, J.-P. Serre pointed out to me that for an algebraic curve over \mathbf{C}, these " periods of differentials of the second kind "are rather classical invariants. Thus, for an elliptic curve defined by the periods ω_{1}, ω_{2} one defines classically the integrals

$$
\eta_{i}=\int_{0}^{\omega_{i}} \eta_{1}
$$

(where $x=\wp z, y=\wp^{\prime} z$, and $\eta=\frac{x d x}{y}$ is a differential of the second kind which, together with the invariant differential ω, forms a basis of $\mathrm{H}^{1}(\mathbf{X})=$ differentials of second kind mod. exact differentials). The only known general algebraic relation among the η_{i} and ω_{i} is

$$
\omega_{1} \eta_{2}-\eta_{1} \omega_{2}=2 i \pi
$$

Schneider's theorem states that if X is algebraic (i.e. its coefficients g_{2} and g_{3} are algebraic), then ω_{1} and ω_{2} are transcendental, and it is believed that if X has no complex multiplication, then ω_{1} and ω_{2} are algebraically independent. This conjecture extends in an obvious way to the set of periods $\left(\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}\right)$ and can be rephrased also for curves of any genus, or rather for abelian varieties of dimension g, involving $4 g$ periods.

Can rephrase as $(\pm \epsilon)$:

$$
\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(\operatorname{Periods}(X))=\operatorname{dim} G_{m o t}(X)
$$

Example (Elliptic curve)

$$
\operatorname{dim} G_{m o t}(E)= \begin{cases}2 & \text { if } E \text { has CM } \\ 4 & \text { if not }\end{cases}
$$

Example (A genus 2 curve)

- $C_{/ \mathbb{Q}}=$ hyperelliptic curve with affine equation $y^{2}=1-x^{5}$. Automorphism

$$
\sigma:(x, y) \mapsto(\zeta x, y), \quad \zeta=e^{\frac{2 \pi i}{5}}
$$

- For suitable $\gamma_{j}(1 \leq i, j \leq 4)$:

$$
\int_{\gamma_{j}} x^{i-1} \frac{d x}{y}=\frac{2}{5} \zeta^{i(j-1)}\left(1-\zeta^{i}\right) B\left(\frac{i}{5}, \frac{1}{2}\right)
$$

Get:

$$
\mathbb{Q}(\text { Periods }(C)) \stackrel{\text { alg }}{\subset} \overline{\mathbb{Q}}(\pi, \Gamma(1 / 5), \Gamma(2 / 5))
$$

Can prove $\operatorname{dim} G_{m o t}(C)=3$, so the period conjecture predicts $\pi, \Gamma(1 / 5), \Gamma(2 / 5)$ algebraically independent.

Chudnovsky's method only gives "at least two of $\pi, \Gamma(1 / 5), \Gamma(2 / 5)$ are algebraically independent" ...

Is there another approach?

Theorem (Nesterenko 1996)
For every $\tau \in \mathbb{H}=\{z \in \mathbb{C} \mid \Im z>0\}$,
$\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}\left(e^{2 \pi i \tau}, E_{2}(\tau), E_{4}(\tau), E_{6}(\tau)\right) \geq 3$

- $E_{2 k}(\tau)=1-\frac{4 k}{B_{2 k}} \sum_{n \geq 1} \sigma_{2 k-1}(n) q^{n} \in \mathbb{Z} \llbracket q \rrbracket$, where $q=e^{2 \pi i \tau}$
- Improves Chudnovsky! Given $E: y^{2}=4 x^{3}-u x-v$,

$$
\begin{aligned}
& E_{2}(\tau)=12 \frac{\omega_{1} \eta_{1}}{(2 \pi i)^{2}}, \quad E_{4}(\tau)=12 u\left(\frac{\omega_{1}}{2 \pi i}\right)^{4}, \quad E_{6}(\tau)=-216 v\left(\frac{\omega_{1}}{2 \pi i}\right)^{6} \\
& \text { where } \tau=\omega_{2} / \omega_{1}
\end{aligned}
$$

- E.g. $e^{\pi}, \pi, \Gamma(1 / 4)$ are algebraically independent
- Proof relies on integrality plus Ramanujan's equations

$$
D E_{2}=\frac{E_{2}^{2}-E_{4}}{12}, \quad D E_{4}=\frac{E_{2} E_{4}-E_{6}}{3}, \quad D E_{6}=\frac{E_{2} E_{6}-E_{4}^{2}}{2}
$$

where $D=\frac{1}{2 \pi i} \frac{d}{d \tau}=q \frac{d}{d q}$

Several variables generalization ?

Zudilin 2000

Thetanulls and differential equations

V.V. Zudilily

 depree if the ditheranal dosure of the fidd genernated by at thecaumits is estath

Billiggrulyy: 26 riske.

Introduction

 other areso owe therir exisecorr to its develpment. There are quite a frw mono grapts (smuxd exampks ure [1] [[3]] aunt popers dedkeatol to thrta fanctions, fich a small part can be fuenil in vur list of literature
 ufich was need in later papers of Frobenins, Kramer. Wirtinger. abl other nuthors
$a_{1}(=, 9)=2 \sum_{n=1}^{\infty}(-1)^{n} 4^{(n+1 / 2)^{2}} \sin (2 n+1)=$
$a_{2}(\bar{s}, \mathrm{q})=2 \sum q^{(x+1 / z)^{2}} \cos (2 a+1) \mathrm{t}$
$=2 q^{1 / 4} \cos z+2 q^{0 / 4} \cos 3 z+2 q^{23 / 4} \cos 5 z+$

Pellarin 2004

Table des matières

Geometric approach (cf. Movasati's "Gauss-Manin in disguise")
-k base field

- $(A, \lambda)_{/ k}$ principally polarized abelian variety of dimension g
- $H_{\mathrm{dR}}^{1}(A)$ is a $2 g$-dimensional k-vector space with:

1. a symplectic k-form $\langle,\rangle_{\lambda}: H_{\mathrm{dR}}^{1}(A) \times H_{\mathrm{dR}}^{1}(A) \rightarrow k$
2. a Lagrangian subspace $H^{0}\left(A, \Omega^{1}\right) \subset H_{\mathrm{dR}}^{1}(A)$ (Hodge filtration)

- Symplectic-Hodge basis: $b=\left(\omega_{1}, \ldots, \omega_{g}, \eta_{1}, \ldots, \eta_{g}\right)$ such that

$$
\omega_{i} \in H^{0}\left(A, \Omega^{1}\right) \quad \text { and } \quad b \text { is symplectic wrt }\langle,\rangle_{\lambda}
$$

Example $(\mathrm{g}=1)$
([dx/y], $[x d x / y]$) is a symplectic Hodge basis of an elliptic curve given by $y^{2}=4 x^{3}-u x-v$

Theorem

There is a smooth Deligne-Mumford stack \mathcal{B}_{g} over \mathbb{Z} classifying (A, λ, b). The base change $\mathcal{B}_{g} \otimes \mathbb{Z}[1 / 2]$ is representable by a smooth quasi-affine $\mathbb{Z}[1 / 2]$-scheme B_{g} of rel. dimension $2 g^{2}+g$.

Example $(g=1)$
$B_{1} \otimes \mathbb{Z}[1 / 6] \cong \operatorname{Spec} \mathbb{Z}\left[1 / 6, x_{1}, x_{2}, x_{3},\left(x_{2}^{3}-x_{3}^{2}\right)^{-1}\right]$
We can see

as a principal P_{g}-bundle

$$
P_{g}=\left\{\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right)\right\} \leq \mathrm{Sp}_{2 g}
$$

Claim: there is a canonical splitting of

$$
0 \longrightarrow T_{\mathcal{B}_{g} / \mathcal{A}_{g}} \longrightarrow T_{\mathcal{B}_{g}} \xrightarrow{D \pi} \pi^{*} T_{\mathcal{A}_{g}} \longrightarrow 0
$$

Consider the vector bundle

The Gauss-Manin connection induces a splitting (Ehresmann)

$$
0 \rightarrow T_{\mathcal{V} / \mathcal{A}_{g}} \xrightarrow{+-} T_{\mathcal{V}} \xrightarrow{D p} p^{*} T_{\mathcal{A}_{g}} \rightarrow 0
$$

We have an immersion over \mathcal{A}_{g} :
This induces a splitting of the
 original sequence via i.

We get an (integrable) subbundle $\mathcal{R}_{g} \subset T_{\mathcal{B}_{g}}$ isomorphic to $\pi^{*} T_{\mathcal{A}_{g}}$

- Let $\mathcal{F}=\mathrm{v}$. bun. over \mathcal{A}_{g} whose fiber at (A, λ) is $H^{0}\left(A, \Omega^{1}\right)$.
- Kodaira-Spencer:

$$
T_{\mathcal{A}_{g}} \cong \operatorname{Sym}^{2}(\mathcal{F})^{\vee}
$$

- $\pi^{*} \mathcal{F}$ trivialized by $\left(\omega_{1}^{\text {univ }}, \ldots, \omega_{g}^{\text {univ }}\right)$, so we get a trivialization

$$
\left(v_{i j}\right)_{1 \leq i \leq j \leq g}
$$

of $\mathcal{R}_{g} \cong \pi^{*} T_{\mathcal{A}_{g}}$, the higher Ramanujan vector fields.
Example $(g=1)$
Under the previous identification of $B_{1} \otimes \mathbb{Z}[1 / 6]$, we get

$$
v_{11}=\frac{x_{1}^{2}-x_{2}}{12} \frac{\partial}{\partial x_{1}}+\frac{x_{1} x_{2}-x_{3}}{3} \frac{\partial}{\partial x_{2}}+\frac{x_{1} x_{3}-x_{2}^{2}}{2} \frac{\partial}{\partial x_{3}} .
$$

Siegel upper half-space:

$$
\mathbb{H}_{g}=\left\{\tau \in M_{g \times g}(\mathbb{C}) \mid \tau=\tau^{t}, \Im \tau>0\right\}
$$

We construct a holomorphic map with "Fourier coefficients in \mathbb{Z} " :

$$
\varphi_{g}: \mathbb{H}_{g} \longrightarrow \mathcal{B}_{g}(\mathbb{C})
$$

satisfying the higher Ramanujan equations:

$$
\frac{1}{2 \pi i} \frac{\partial \varphi_{g}}{\partial \tau_{k l}}=v_{k l} \circ \varphi_{g} .
$$

Example ($\mathrm{g}=1$)
Under the previous identification, $\varphi_{1}=\left(E_{2}, E_{4}, E_{6}\right)$.

Theorem

Let (A, λ) be defined over \mathbb{Q}. Then there exists $\tau \in \mathbb{H}_{g}$ such that

$$
\overline{\mathbb{Q}}(\operatorname{Periods}(A)) \supset \overline{\mathbb{Q}}\left(2 \pi i, \tau, \varphi_{g}(\tau)\right)
$$

is a finite field extension.

Question: can we extend Nesterenko's methods to φ_{2} ?
Would prove algebraic independence of $\pi, \Gamma(1 / 5), \Gamma(2 / 5) \ldots$ Note:
generically,

$$
G_{m o t}(A)=\mathrm{GSp}_{2 g} \Longrightarrow \operatorname{dim} G_{m o t}(A)=2 g^{2}+g+1
$$

By the period conjecture, we expect $\varphi_{g}\left(\mathbb{H}_{g}\right)$ to be Zariski-dense in $\mathcal{B}_{g}(\mathbb{C})$.

Theorem

Every analytic leaf of \mathcal{R}_{g} is Zariski-dense in $\mathcal{B}_{g}(\mathbb{C})$.
Related to Nesterenko's "D-property" in transcendence theory.

Proof of the special case $\varphi_{g}\left(\mathbb{H}_{g}\right)$.

- It suffices: $\varphi_{g}\left(\mathbb{H}_{g}\right)$ is Zariski-dense in each fiber of $\pi: \mathcal{B}_{g} \rightarrow \mathcal{A}_{g}$. Note: $\mathcal{A}_{g}(\mathbb{C})=\operatorname{Sp}_{2 g}(\mathbb{Z}) \backslash \backslash \mathbb{H}_{g}$.
- Given $\tau \in \mathbb{H}_{g}$, boils down to the Zariski-density of

$$
\begin{aligned}
& \left\{\left(\begin{array}{cc}
(C \tau+D)^{-1} & -\frac{1}{2 \pi i} C^{t} \\
0 & (C \tau+D)^{t}
\end{array}\right) \in P_{g}(\mathbb{C}) ;\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}_{2 g}(\mathbb{Z})\right\} \\
& \text { in } P_{g}(\mathbb{C}) .
\end{aligned}
$$

- Follows from the Zariski-density of $\mathrm{Sp}_{2 g}(\mathbb{Z})$ in $\mathrm{Sp}_{2 g}(\mathbb{C})$.

Theorem

The graph of φ_{g}

$$
\left\{\left(\tau, \varphi_{g}(\tau)\right) \in \operatorname{Sym}_{g}(\mathbb{C}) \times \mathcal{B}_{g}(\mathbb{C}) \mid \tau \in \mathbb{H}_{g}\right\}
$$

is Zariski-dense in $\operatorname{Sym}_{g}(\mathbb{C}) \times \mathcal{B}_{g}(\mathbb{C})$.
$\left.{ }^{(10}\right)$ In fact, J.-P. Serre pointed out to me that for an algebraic curve over C, these " periods of differentials of the second kind "are rather classical invariants. Thus, for an elliptic curve defined by the periods ω_{1}, ω_{2} one defines classically the integrals

$$
\eta_{i}=\int_{0}^{\omega_{i}} \eta_{0}
$$

(where $x=\rho z, y=\wp^{\prime} z$, and $\eta=\frac{x d x}{y}$ is a differential of the second kind which, together with the invariant differential ω, forms a basis of $H^{1}(\mathbb{X})=$ differentials of second kind mod. exact differentials). The only known general algebraic relation among the η_{i} and ω_{i} is

$$
\omega_{1} \eta_{2}-\eta_{1} \omega_{2}=2 i \pi
$$

Schneider's theorem states that if X is algebraic (i.e. its coefficients g_{2} and g_{3} are algebraic), then ω_{1} and ω_{2} are transcendental, and it is believed that if X has no complex multiplication, then ω_{1} and ω_{2} are algebraically independent. This conjecture extends in an obvious way to the set of periods $\left(\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}\right)$ and can be rephrased also for curves of any genus, or rather for abelian varieties of dimension g, involving $4 g$ periods.

The only general algebraic relation between periods of principally polarized abelian varieties are the ones given by the polarization data.

[^0]: added to provide references and further comments. (Except for remark ($\left.{ }^{3}\right\rangle$, these remarlis were written in November 1963.)
 () M. P. Arryar and W. V. D. Hodos, Integrals of the second kind on an algebraic variety, Amalls of

