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Theorem (Lindemann 1882)

7 Is transcendental.

Ueber die Zahl x.¥)
Von

F. Lixomxans in Freiburg i. Br.

Bei der Vergeblichkeit der so ausserordentlich zablreichen Ver-
suche™), dio Quadratur des Kreises mit Cirkel und Lineal anszufibren,
hilk man allgenein di Lisung der benschuelen Aufgabe e une
miglich; es fehlte o ein Beweis dieser Unmoglichkeit; nur
e Tropeit yor 5 v von 31 festgestellt. Jede mit Cirkel
fnd Ll aothease Ootisucim ik i bl slbraiebos
Einkleidung zurlickfiibren suf die Lisung von linearen und

tischen Gleichungen, also auch auf die Losung einer Reihe von q\lud
tischen Gloichungen , deren erste rationale Zahlen zu Coefficienten hat,
wihrend die Coefficienten jeder folgenden nur solche irrationsle Zahlen
enthalten, die durch Auflbsung der vorhergehenden Gleichungen ein-
gefubrt sind. Die Schlussgleichung wird also durch wiederholtes
Quadriren ibergefubrt werden kimnen in eine Gleichung geraden
Grades, deren Coefficienten rationale Zohlen sind. Man wird sonach
die Unmoglichkeit der Quadratur des Kreises darthun, wenn man
nachweist, dass dic Zahl = siberhaupt niché Wursel ciner algbraischen
Gleichung irgend welchen Grades mit rationalen Cocfficienten sein Eann.
Den daftir nothigen Beweis zu erbringen, ist im Folgenden versucht
worden.
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Theorem (Schneider 1937)

Q is transcendental.

Arithmeti ipti Integrale.
Vo

Theodor Schueider in Frankfurt a. M.

Tm Jshre 1931 zeigte C. L. Siegel!), daB die GroBen g, gy, vy, wy
nicht sémtlich algebraisch sind, wobei , und @, die Perioden der durch
g, und g, bestimmten WeierstraBschen @-Funktion seien. Mit einer
abnliohen Methode bewiu ich im Fnbmr 1034%), dab auch g,, gy, @, 7
nicht alle algebraisch wemn @ und 4 demselben Integre
cutpreshen. I weiten Tl meines Disertation®) ket ich den Bemes
des Sataes: Besteht swichen § und v = 2 keine lineare Besichung mit
ratioualea Koeffisienten, so ist mindestens eine der GroBen g, g5, , 8
uwd @ (@,) Auf Grund anderer ngte
im Vorjabre G. Pélys) zu der Aussage: Weun h eine komplexe Zabl
vom Absolutbetrage < 1 ist, so sind nicht alle fiinf Zahlen

I 2

Py

(r=123,

e
b
algebraisch. Diese ist wieder enthalten in dem vor einigen Monaten von
P. Popken und K. Mshler®) bewiesenen Satz, daB auch die drei GroBen




Is Q, or ['(1/4), algebraically independent to 7?7

Recall: «, 8 € C are algebraically independent (over Q) if there exists no
non-zero P € Q[X, Y] such that P(a, 3) = 0.

Algebraic Independence of Values of Exponential
and Elliptic Fanctions

G. V. Chudnovsky

Theorem (Chudnovsky 1976)
0. Only one Congress separates us from 1982, the centenary of Lindemann's

T and r(1/4) are a/gebralca//y theorem on the transcendence of 7. Many things have changed since 1882 in

Transcendence Theory. For the last years especially there has been considerable
. progress in understanding the fundamental problems of Transcendence Theory.
n d e p en d en t Although the analytic part of proofs looks like 40 years ago the algebraic arguments
. have changed completely. Now Transcendence Theory uses a lot of modern mathe-
matics (algebra, algebraic geometry, complex analysis) and also has its fields of
application. We'll ry to describe the new situation with the theory of transcendence

A | SO t rue for 7T an d r ( 1 / 3) and algebraic independence for the exponential, elliptic and Abelian functions.
. Let () denote the Weierstrass elliptic function with algebraic invariants
22,2 and {(2) the {-function, {’(z)=—p (2). Let @, denote any pair of periods
and quasi-periods of (2): {(z+0)={()-+n, and let @, n; denote fundamental
periods and quasi-periods of p(z). We call point u as algebraic for ©() if
©@EQ. For a finite set SCC, 4 denotes the maximal number of algebraically

independent (a.i.) elements in 5.

Open problem: are m,(1/5),(2/5) algebraically independent?



P> A. Grothendieck, On the de Rham cohomology of algebraic
varieties. Publications Mathématiques de I'HES, tome 29 (1966)

ON THE DE RHAM COHOMOLOGY
OF ALGEBRAIC VARIETIES
by A. GROTHENDIECK

.. In connection with Hartshorne’s seminar on duality, T had a look recently at
your joint paper with Hodge on * Integrals of the second kind » (). As Hironaka has
proved the resolution of singularities (*), the * Conjecture G of that paper (p. 81)
holds true, and hence the results of that paper which depend on it. Now it occurred
to me that in this paper, the whole strength of the  Conjecture C * has not been fully
exploited, namely that the theory of “ integrals of second kind ” s essentially contained
in the following very simple

Theorem 1. — Let X be an affine algebraic scheme over the field G of comples mumbers ;
assume X regular (ie.  non singular ?). Then the complex cohomology H'(X, C) can be
caleulated as the cohomology of the algebraic De Rham complex (i.c. the complex of differential
Jorms on X which are * rational and cverywhere defined ).

This theorem had been checked previously by Hochschild and Kostant when X
is an affine homogencous space under an algebraic linear group, and I think they also
raised the question as for the general validity of the result stated in theorem 1.

Tt will be convenient, for further applications, to give a slightly more general
formulation, as follows. If X is any prescheme locally of finite type over 2 field £, and
« smooth » over k, we can consider the complex of sheaves O, of regular differentials
on X, the differential operator being of course the exterior differential. Let us consider
the hypercohomology
(O] H(X)=H'(X, Q)
which we may call the  De Rham cohomology
cohomology **

(2) H'(X, 9

of X, in contrast to the * Hodge

LH(K, 68,),

(3Tl o bt of i b 3 W Az, G Ot e o, Some s s b

added to provide references and further comments. (Except for remark (W), these remarks were writ
November' 1963,
AL ¥ A and W V. . Hopos, ntgrals of the second ki on an agcbrsc vaiey, Amals of

Mategic vl G2 (155). p.or. This paper s selere to by A in the sl
o) H. e of Ao o el vty ves o Bk of charsteritic e, Al
o Mabl vl 7y 196 T 10993,
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X, smooth algebraic variety
> Hir(X) = H"(
> Hg(X)

X/Q)
HA(X(C), Q)"

comp : HiR (X) ®g C 5 HE(X) ®g C

(o] (1] / a)

Period matrix:

P=([ a)ij

2

[j] and [v;] bases defined over Q



Example (Elliptic curves)
Let E C IP? be given by y?z = 4x3 — uxz? — vz3, with u,v € Q,
satisfying u® — 27v2 # 0.

From
Hir(E) = Hir(E"),  E=E\ {0}
we obtain
wia-a [£]oa |2
- T

p=(am)=(ks 1

/
> Legendre: winy — womy = 27i £
=
» In the case u = 4,v =0, we have

L«Jl:Q,WQ:iQ

N———



Crucial remark: algebraic cycles induce relations between periods!

Example (Complex multiplication)

Let ¢ € End(Ec) \ Z (corresponds to 1-cycle in E x E).
From

@R © comp = comp © PR
a b wi Mmoo _ [ w1 om a 3
C d w2 12 w2 12 0 5

awi + bwy Wi w1
cwi + dws  wo wo



Conjecture (Grothendieck)
Every algebraic relation between periods is of motivic origin.

(19 In fact, J.-P. Serre pointed out to me that for an algebraic curve over C, these  periods of differentials of
the second kind ** are rather classical invariants. Thus, for an elliptic curve defined by the periods e, , @ one defines
classically the integrals

Ee i
= [,

(where x=pz, y=p’z, and n=2— is a differential of the second kind which, together with the invariant
differential @, forms a basis of F*(X)= differentials of second kind mod. exact differentials). The only known
general algebraic relation among the 7; and o is
o —m ey =2ir.

Schneider'’s theorem states that if X is algebraic (i.c. its cocfficients gy and g arc algebraic), then @, and o, are
transcendental, and it is belicved that if X has no complex multiplication, then @, and w, are algcbraically
independent. This conjecture extends in an obvious way to the set of periods (e, @y, 7, 7y) and can be rephrased
also for curves of any genus, or rather for abelian varicties of dimension g, involving 4¢ periods.

Can rephrase as (+¢):

trdegyQ(Periods(X)) = dim Gpot (X)

Example (Elliptic curve)

2 if E has CM

dim Gmot(E) =14 if not



Example (A genus 2 curve)

» C,g = hyperelliptic curve with affine
equation y? = 1 — x°. Automorphism

2mi

o:(x,y) = (Cxy), (=es

» For suitable v; (1 <i,j < 4):

L Y
[ A =508 (5

Get:
Q(Periods(C)) & T(r, F(1/5), 1(2/5))

Can prove dim Gpee(C) = 3, so the period conjecture predicts
m,1(1/5),T(2/5) algebraically independent.



Chudnovsky's method only gives “at least two of 7, (1/5),(2/5)
are algebraically independent” ...

Is there another approach?



Theorem (Nesterenko 1996)
For every r € H={z € C| 3z > 0},

trdegyQ(e”™™, Ex(7), Ea(T), Eo(T)) > 3

> Exn(r)=1- é—;‘k n>102k-1(n)q" € Z[q], where g = e2mit

» Improves Chudnovsky! Given E : y? = 4x3 — ux — v,

4 6
Ex(r) = 12(‘2";7;2, Ei(7) = 12u (%) . Es(r) = —216v (%)

where 7 = wy /wy
> E.g. e, m,[(1/4) are algebraically independent

» Proof relies on integrality plus Ramanujan’s equations

E2_ E, EE, — E; E,E; — E2
DE, = =2 DE, — —2—% =6 DE: — =256 — =4
2 12 ’ 4 3 ) 6 2
_ 1 d _ _d
WhereD—%E—qdfq



Several variables generalization ?

Zudilin 2000 Pellarin 2004

Introduction aux formes
modulaires de Hilbert et & leur
propriétés différentielles.

Thetanulls and differential equations
Federico Pellarin
V. Zudtn
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Geometric approach (cf. Movasati's “Gauss-Manin in disguise”)
> k base field
> (A, )\)/k principally polarized abelian variety of dimension g

> Hl:(A) is a 2g-dimensional k-vector space with:
1. a symplectic k-form (, ) : Hiz(A) x Hiz(A) — k
2. a Lagrangian subspace H°(A, Q) C Hiz(A) (Hodge filtration)

» Symplectic-Hodge basis: b = (w1, ...,wg, M1, ...,7g) such
that

wi € HY(A,Q') and b is symplectic wrt {, )y

Example (g=1)
([dx/y], [xdx/y]) is a symplectic Hodge basis of an elliptic curve
given by y2 =4x3 —ux — v



Theorem

There is a smooth Deligne-Mumford stack By over Z classifying
(A, A, b). The base change By @ Z[1/2] is representable by a
smooth quasi-affine Z[1/2]-scheme B, of rel. dimension 2g> + g.

Example (g = 1)
B; ® Z[1/6] = SpecZ[1/6, x1, x2, X3, (xg’ — xg)’l]

We can see
(A, A\ b) Bg
(A7 >‘) ‘Ag

as a principal Pg-bundle



Claim: there is a canonical splitting of

0— Tp,ja, — Tn, ﬁ>7r"‘T,4g —0

Consider the vector bundle

V. Hip(A)®E The Gauss-Manin connection
P l induces a splitting (Ehresmann)
Ag (AN 0= Ty, & Tv B p Ta, >0

We have an immersion over A,:
This induces a splitting of the

(A A, b) (A A 771>~~»77g) original sequence via i.

\ / We get an (integrable) subbundle
Rg C Tp, isomorphic to 7% T 4,




> Let F = v. bun. over A, whose fiber at (A, ) is H(A, Q).

» Kodaira-Spencer:
Ta, = Sym?(F)"

> 7*F trivialized by (wi™V, ... ,wg”iv), so we get a trivialization

(Vij)i<i<i<e
of Rg = m* T 4,, the higher Ramanujan vector fields.

Example (g = 1)
Under the previous identification of By ® Z[1/6], we get

x12 — X2 0 X1Xo —x3 O X1X3 — x22 0

12 0x 3 Ox 2 Ox3

Vi1



Siegel upper half-space:
Hg = {7 € Mgxe(C) | 7 = 7F, I7 > 0}
We construct a holomorphic map with “Fourier coefficients in Z" :
pg - Hg — Bg(C)
satisfying the higher Ramanujan equations:

L9 _ g
27i O1y k© Ve
Example (g=1)

Under the previous identification, ¢1 = (Ep, Ea, Ep).



Theorem
Let (A, \) be defined over Q. Then there exists T € Hg such that

Q(Periods(A)) D Q(27i, T, pg(T))
is a finite field extension.
Question: can we extend Nesterenko's methods to ¢5?
Would prove algebraic independence of 7, (1/5),(2/5)... Note:
generically,
Gmot(A) = GSpy, = dim Gmer(A) =28° + g+ 1

By the period conjecture, we expect ¢z (Hy) to be Zariski-dense in
Bg(C).



Theorem
Every analytic leaf of Ry is Zariski-dense in Bg(C).

Related to Nesterenko's “D-property” in transcendence theory.

Proof of the special case ¢, (Hy).

> It suffices: g (Hg) is Zariski-dense in each fiber of
m: Bg — Ag. Note: Ag(C) = Spy,(Z)\\Hg-
» Given 7 € Hy, boils down to the Zariski-density of

(7 1oy )em@i (€ 5) esmut)

in Pg(C).
> Follows from the Zariski-density of Spy,(Z) in Spy,(C).

O



Theorem
The graph of g

{(7, 9g(7)) € Symg(C) x Bg(C) | 7 € Hg}
is Zariski-dense in Sym,(C) x Bg(C).

(1) In fact, J.-P. Serre pointed out to me that for an algebraic curve over €, these * periods of differentials of
the second kind *” are rather classical invariants. Thus, for an elliptic curve defined by the periods e, o, one defines
classically the integrals

o
m=~|‘ﬂ L3
(where x=pz, y=p’z, and n=> is a differcntial of the sccond kind which, together with the invariant

differential e, forms a basis of F'(X)= differentials of second kind mod. exact differentials). The only known
general algebraic relation among the 7; and @ is

@My — My 0y =2ir.
Schneider’s theorem states that if X is algebraic (ie. its coefficients g, and g are algebraic), then &, and w; are
transcendental, and it is belicved that if X has no complex multiplication, then @, and , are algebraically
independent. This conjecture cxtends in an obvious way to the set of periods (c , tg, 1y 7) and can be rephrased
also for curves of any genus, or rather for abelian varieties of dimension g, involving 4¢ periods.

The only general algebraic relation between periods of principally
polarized abelian varieties are the ones given by the polarization
data.



