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1 Introduction

The main objectives of this course are:

1. To introduce some differential techniques in algebraic geometry.

2. To show how to associate to any family of algebraic varieties a certain differential equation.

For instance, let us consider the Legendre family of elliptic curves:

E

P1 \ {0, 1,∞}

where the fiber of a point λ ∈ P1 \ {0, 1,∞} is given by the elliptic curve

Eλ : y2 = x(x− 1)(x− λ).

To this family is associated a Picard-Fuchs equation; namely, a second order differential equation
given explicitly by

λ(1− λ)
d

dλ2
+ (1− 2λ)

d

dλ
− 1

4
= 0.

The solutions of Picard-Fuchs equations are given by period integrals, and these encode a
lot of information about the given family of algebraic varieties. In the above example, we have
the holomorphic solution

$(λ) = 2

∫ ∞
1

dx√
x(x− 1)(x− λ)

= 2π
∞∑
n=0

(
−1/2

n

)2

λn,
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and Igusa famously remarked that, for any λ ∈ Z \ {0, 1} and prime p > 2,

|Eλ(Fp)| = (−1)
p+1
2

p−1
2∑

n=0

(
−1/2

n

)2

λn mod p.

That is, the number of Fp-points of the fibers are given by a certain truncation of the holomor-
phic solution $ of the Picard-Fuchs equation! This is strong indication that this equation is of
‘motivic origin’, in some sense.

The above phenomenon was one of the main inspirations for Dwork’s work on zeta functions
of algebraic varieties via p-adic analysis, and it was greatly clarified by Manin with the intro-
duction of (what we call nowadays) the Gauss-Manin connection: a purely algebraic operation
allowing to differentiate cohomology classes.

The Gauss-Manin connection is now pervasive in algebraic geometry and in number theory.
It is related to the study of periods, modular forms, and mirror symmetry, to name a few. This
course is an introduction to this concept.

2 Derivations

The usual derivative

f(t) 7−→ f ′(t) = lim
h→0

f(t+ h)− f(t)

h

of a differentiable real function is R-linear and satisfies the so-called product rule:

(fg)′ = fg′ + f ′g.

Since the above kind of limits are not available in commutative algebra, the main idea in
developping an algebraic version of differential calculus is to take the above two (algebraic)
properties as an abstract definition of a “derivation”.

Definition 2.1. Let R be a ring, A be an R-algebra, and M be an A-module. An R-linear
map D : A −→M is an R-derivation if for every f, g ∈ A we have

D(fg) = fD(g) + gD(f).

In particular, D(r) = 0 for every r ∈ R; we say that r is a constant for D.

The set of such maps is denoted by DerR(A,M) and has a natural structure of a left A-
module. If M = A, then we denote simply DerR(A); this is the A-module of R-derivations of
A.

Example 2.2. If A = R[x1, . . . , xn], then the formal derivative with respect to the ‘variable’
xi is the unique R-derivation ∂

∂xi
of A satisfying

∂

∂xi
(xj) = δij .

In general, for f ∈ A, we denote
∂

∂xi
(f) =

∂f

∂xi
.

For any D ∈ DerR(A), we have

D =

n∑
i=1

D(xi)
∂

∂xi
.
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In particular, the A-module DerR(A) is free with basis (∂/∂xi)i=1,...,n:

DerR(A) = A
∂

∂x1
⊕ · · · ⊕A ∂

∂xn
.

When n = 1, i.e., A = R[x], and f =
∑

i rix
i ∈ A, we also denote

f ′ =
df

dx
=
∂f

∂x
=
∑
i

irix
i−1.

Remark 2.3 (Geometric interpretation). If X = SpecA, then a derivation D ∈ DerR(A) can
also be called a vector field on the R-scheme X. For instance, take R = C, and A = C[x, y].
Then R-derivations of A correspond to what is classically known as ‘polynomial vector fields on
C2’; namely, expressions of the form

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

with P,Q ∈ C[x, y]. For each p = (x0, y0) ∈ C2,

vp = P (x0, y0)
∂

∂x

∣∣∣∣
p

+Q(x0, y0)
∂

∂y

∣∣∣∣
p

should be visualized as a ‘tangent vector’ of C2 at p with coordinates (P (x0, y0), Q(x0, y0)).

In general, it is not easy to compute the module of derivations on a given R-algebra. To
remedy this, we deal with the better behaved dual notion of differentials.

3 Differentials

Lemma 3.1. Let R be a ring and A be an R-algebra. The endofunctor on the category of
A-modules

M 7−→ DerR(A,M)

is representable. That is, there exists a unique (up to unique isomorphism) A-module Ω1
A/R

such that, for every A-module M ,

DerR(A,M) ∼= HomA(Ω1
A/R,M)

functorially in M .

Proof. Let Ω1
A/R be the quotient of the free A-module generated by the symbols df , f ∈ A, by

the relations

1. d(f + g) = df + dg, for every f, g ∈ A

2. d(fg) = fdg + gdf , for every f, g ∈ A

3. dr = 0, for every r ∈ R.

Then d : A −→ Ω1
A/R defines an R-derivation and, for every A-module M with an R-derivation

D : A −→ M , there exists a unique A-linear map Ω1
A/R −→ M making the following diagram

commute:

Ω1
A/R M

A

d D

�
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Note that d : A −→ Ω1
A/R in the above proof is the ‘universal R-derivation’ corresponding

to id ∈ HomA(Ω1
A/R,Ω

1
A/R).

Definition 3.2. The A-module Ω1
A/R of the above lemma is the module of differential 1-forms

of A over R.

Example 3.3. If A = R[x1, . . . , xn], then Ω1
A/R is the free module on (dxi)i=1,...,n:

Ω1
A/R = Adx1 ⊕ · · · ⊕Adxn.

The derivation d : A −→ Ω1
A/R is given by

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

In general, the universal property of Ω1
A/R implies that DerR(A) is its dual A-module:

(Ω1
A/R)∨ = HomA(Ω1

A/R, A) ∼= DerR(A),

the duality being given by the unique A-bilinear pairing

〈 , 〉 : DerR(A)× Ω1
A/R −→ A

satisfying
〈D, df〉 = Df

for every f ∈ A.

Example 3.4. By Example 3.3, the basis (∂/∂xi)i=1,...,n of DerR(R[x1, . . . , xn]) is simply the
dual basis of (dxi)i=1,...,n.

Let ϕ : A −→ B be a morphism of R-algebras. Then we have canonical B-linear maps

Ω1
A/R ⊗R B −→ Ω1

B/R

df ⊗ g 7−→ gdϕ(f)

and

Ω1
B/R −→ Ω1

B/A

dg 7−→ dg.

Proposition 3.5 (Basic exact sequences). Let ϕ : A −→ B be a morphism of R-algebras.

1. The sequence of B-modules

Ω1
A/R ⊗A B −→ Ω1

B/R −→ Ω1
B/A −→ 0

is exact.

2. If ϕ is surjective, so that B = A/I for some ideal I ⊂ A, then Ω1
B/A = 0 and the following

sequence of B-modules is exact:

I/I2 −→ Ω1
A/R ⊗A B −→ Ω1

B/R −→ 0

f + I2 7−→ df ⊗ 1
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Proof. The exactness of the first exact sequence is equivalent to the exactness of

0 −→ HomB(Ω1
B/A, N) −→ HomB(Ω1

B/R, N) −→ HomB(Ω1
A/R ⊗R B,N)

for every B-module N . By the universal property of differential forms, the above sequence is
isomorphic to

0 −→ DerA(B,N) −→ DerR(B,N) −→ DerR(A,N),

which is easily checked to be exact.
If B = A/I, then Ω1

B/A = 0 since B is generated by constants. Here again, we use the
universal property and we check that

0 −→ DerR(A/I,N) −→ DerR(A,N) −→ HomA/I(I/I
2, N)

D 7−→ (f + I2 7−→ D(f))

is exact for every A/I-module N . �

Example 3.6 (Affine hypersurfaces). Let A = R[x1, . . . , xn], f ∈ A, and B = A/(f). Then

Ω1
B/R =

Bdx1 ⊕ · · · ⊕Bdxn
Bdf

.

Example 3.7 (Standard étale algebras). Let f, g ∈ R[x] with f monic, and set

A = R[x]g/(f).

If the image of f ′ in A is invertible, then we say that A is a standard étale algebra over R. In
this case it follows from the last example that Ω1

A/R = 0.

Remark 3.8. In the above example, X = SpecA should be seen as a “covering space” of
S = SpecR. For instance, take R = C[t, t−1], f = xn − t (for some n ≥ 1), and g = x. Then
R −→ A is standard étale and the morphism X −→ S induces on the level of C-points the
usual n-sheeted covering

C× −→ C×, z 7−→ zn.

We now provide an alternative way of defining Ω1
A/R.

Proposition 3.9 (Differentials via the augmentation ideal). Let A be an R-algebra and I ⊂
A⊗R A (the augmentation ideal) be the kernel of the R-morphism

A⊗R A −→ A, f ⊗ g 7−→ fg

Then:

1. The left and right A-algebra structures on A⊗RA induce the same A-module structure on
I/I2;

2. The map
δ : A −→ I/I2, f 7−→ 1⊗ f − f ⊗ 1 mod I2

is an R-derivation and its image generates I/I2 as an A-module.

3. The A-linear map Ω1
A/R −→ I/I2 induced by δ is an isomorphism.

5



In other words, I/I2 can be identified with the module of differential 1-forms Ω1
A/R, with

universal derivation d : A −→ Ω1
A/R being given by f 7−→ 1⊗ f + f ⊗ 1 mod I2.

Proof. For any f ∈ A, 1⊗ f − f ⊗ 1 ∈ I. Thus, for α ∈ I, we have

(1⊗ f)α− α(f ⊗ 1) = (1⊗ f − f ⊗ 1)α ∈ I2

This proves 1.
Using 1, it is easy to check that δ is an R-derivation. The rest of 2 follows from the following

formula: ∑
i

fi ⊗ gi =
∑
i

(fi ⊗ 1)(1⊗ gi − gi ⊗ 1) +
∑
i

figi ⊗ 1.

To prove 3, consider the A-module P = A⊕ Ω1
A/R and define a ring structure on P by

(f, ω) · (g, η) = (fg, fη + gω).

The ring P is an A-algebra via f 7−→ (f, 0). Note that Ω1
A/R can be naturally identified with

an ideal J = {(0, ω) ∈ P | ω ∈ Ω1
A/R} of P satisfying J2 = 0. Clearly,

A⊗R A −→ P , f ⊗ g 7−→ (fg, fdg)

is a well-defined (left) A-algebra morphism sending I to J , so that it induces an A-linear map

I/I2 −→ Ω1
A/R

sending δ(f) to df , that is, an inverse of Ω1
A/R −→ I/I2. �

4 Globalizing

Definition 4.1. Let X be an S-scheme and denote by I the ideal sheaf defined by the diagonal
immersion1 X −→ X ×S X. The sheaf of differential 1-forms of X over S is the quasi-coherent
OX -module defined by

Ω1
X/S = I/I2.

If pj : X ×S X −→ X denotes the jth projection, j = 1, 2, then we define an OS-morphism

d : OX −→ Ω1
X/S , f 7−→ p∗2f − p∗1f mod I2.

It follows from Proposition 3.9 that for any affine open U = SpecA ⊂ X lying over an affine
open V = SpecR ⊂ S, we have

Γ(U,Ω1
X/S) = Ω1

A/R,

and that d restricts to the universal derivation A −→ Ω1
A/R. Similarly, for every x ∈ X lying

over s ∈ S,
(Ω1

X/S)x = Ω1
OX,x/OS,s

.

Exercise 4.2 (Vector bundles). Let p : V(E) −→ S be the total space of a vector bundle2 E
over a scheme S. Prove that

Ω1
E/S
∼= p∗E

canonically. Hint: prove first that for any R-modules M and N , we can identify HomR(M,N) =
DerR(SymM,N) and conclude that SymM ⊗R M −→ Ω1

SymM/R, f ⊗ m 7−→ fdm, is an
isomorphism of SymM -modules.

1In general, an immersion i : Z ↪→ X is an isomorphism over a closed subscheme i(Z) of a largest open subset
U of X; the ideal I of i is by definition the quasi-coherent sheaf of ideals defining i(Z) in U .

2Here, a vector bundle means a locally free sheaf of finite rank.
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Example 4.3 (Punctured elliptic curve). Let k be a field of characteristic 6= 2, 3, and U be the
closed affine subscheme of A2

k = Spec k[x, y] defned by the equation

f = y2 − (4x3 − g2x− g3) ∈ k[x, y]

with g2, g3 ∈ k satisfying g32 − 27g23 6= 0. This last condition implies that

df = 2ydy − (12x2 − g2)dx ∈ Ω1
A2

k/k

never vanishes on U . In particular, U0 = D(y) ∩ U and U1 = D(12x2 − g2) ∩ U define an
open covering of X. Since df = 0 in Ω1

U/k (cf. Example 3.6), there’s a unique global section

ω ∈ Γ(U,Ω1
U/k) such that

ω|U0 =
dx

y
ω|U1 =

2dy

12x2 − g2
.

Actually, it follows from Example 3.6 that Ω1
U/k|U0 is free of rank 1 with generator ω|U0 , and

similarly for U1. This proves that Ω1
U/k is line bundle over U trivialized by ω. By abuse, it is

common to simply denote

ω =
dx

y
.

Exercise 4.4. Generalize the above example to any affine plane curve.

Let us now consider some projective examples.

Example 4.5 (Projective line). Consider P1
R = ProjR[x0, x1], with open covering U0 =

D+(x0) = SpecR[x1/x0] and U1 = D+(x1) = SpecR[x0/x1]. Then there exists a unique
global section ω ∈ Γ(P1

R,O(2)⊗ Ω1
P1

R/R
) such that

ω|U0 = x20d

(
x1
x0

)
ω|U1 = −x21d(

x0
x1

).

Indeed, one may readily verify that the above forms coincide on U0 ∩ U1. Since x2i trivializes
O(2)|Ui and d(x1−i/xi) trivializes Ω1

Ui/R
(see Example 3.3), ω is a trivialization of O(2)⊗Ω1

P1
R/R

.

In particular,
Ω1
P1

R/R
∼= O(−2).

In particular, Ω1
P1

R/R
admits no global section.

Example 4.6 (Elliptic curve). Let k be a field of characteristic 6= 2, 3 and E ⊂ P2
k =

Proj k[X,Y, Z] be the projective plane curve defined by the homogeneous equation of degree 3

F = Y 2Z − (4X3 − g2XZ2 − g3Z3) ∈ k[X,Y, Z].

with g32 − 27g23 6= 0. We denote U = E ∩D+(Z) and (X/Z, Y/Z) = (x, y), so that U coincides
with the affine curve considered in Example 4.3. We will prove that the differential form

ω =
dx

y

on U extends to a global differential form on E, and that it trivializes Ω1
E/k; that is,

Ω1
E/k = OE

dx

y
.
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Indeed, let V = E ∩D+(Y ), so that E = U ∪ V . If we denote (X/Y,Z/Y ) = (t, s), then V is
the affine curve given by the equation

s− (4t3 − g2ts− g3s3) ∈ k[t, s].

Arguing as before, we see that

− 2ds

12t2 − g2s2

trivializes Ω1
V/k. Now, over U ∩ V , we have (t, s) = (x/y, 1/y), so that

− 2ds

12t2 − g2s2
= − 2d(1/y)

12(x/y)2 − g2(1/y)2
=

2dy

12x2 − g2
= ω.

Thus, ω extends to a global section of Ω1
E/k. It trivializes this line bundle globally since it does

locally.
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