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1 Globalizing (cont.)

We come back to the general theory. Let S be a base scheme. There are two main situations
in which we want to study differetials:

(a) A morphism of S-schemes:

X Y

S

ϕ

Here, X should be thought as a family of S-schemes (Xy)y∈Y parametrized by Y .

(b) An S-immersion of ideal I:

Z X

S

i

That is, Z is an S-subscheme of the “ambient S-scheme” X.

Proposition 1.1. In situation (a), we have a canonical exact sequence

ϕ∗Ω1
Y/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0.

In situation (b), we denote CZ/X = I/I2, and we have a canonical exact sequence

CZ/X
d−→ i∗Ω1

X/S −→ Ω1
Z/S −→ 0.

The sheaf CZ/X is called the conormal sheaf of Z in X.

Proof. It follows immediately from the corresponding affine statement in the last lecture (Basic
exact sequences). �

Finally, we state the compatibility of the sheaf of differentials with products and pullbacks.
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Proposition 1.2. 1. Consider a Cartesian square of schemes

X ′ X

S′ S

ϕ

�

Then we have a canonical isomorphism

Ω1
X′/S′

∼= ϕ∗Ω1
X/S.

2. Let X1 and X2 be S-schemes, then

Ω1
X1×SX2/S

= Ω1
X1×SX2/X2

⊕ Ω1
X1×SX2/X1

.

In particular, if pi : X1 ×S X2 −→ Xi denotes the ith projection, i = 1, 2, then it follows
from 1 that we have a canonical isomorphism

Ω1
X1×SX2/S

∼= p∗1Ω
1
X1/S

⊕ p∗2Ω1
X2/S

.

Proof. Exercise. �

We next turn our attention to a class of morphisms which allow us to get more precise
information on differentials.

2 Smooth morphisms

Definition 2.1. We say that a closed immersion X ↪→ X1 is a thickening (of order 1) of X if
its defining ideal I ⊂ OX satisfies I2 = 0. We say that the thickening X ↪→ X1 is affine if both
X and X1 are affine schemes.

Example 2.2 (Dual numbers). Let R be a ring, X = SpecR, and X1 = SpecR[ε] where
ε2 = 0 (i.e., R[ε] = R[x]/(x2)). Then the closed immersion X ↪→ X1 induced by the R-algebra
morphism

R[ε] −→ R

ε 7−→ 0

is an affine thickening. The ring R[ε] is called ‘ring of dual numbers over R’.

Definition 2.3 (Smoothness). Let π : X −→ S be a morphism of schemes. We say that π is
smooth if

1. π is locally of finite presentation1;

2. for every diagram

X

T T1 S

π

1This means that for every p ∈ X, there exists an affine open neighborhood U = SpecA of x and an affine
open neighborhood V = SpecR of π(x) such that π∗ : R −→ A is of finite presentation. If S is locally Noetherian,
then “locally of finite presentation” is equivalent to “locally of finite type”.
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where T ↪→ T1 is an affine thickening, there exists a morphism T1 −→ X making

X

T T1 S

π

commute.

When π is implicit, we also say that X is smooth over S, or that the S-scheme X is smooth.

Remark 2.4. Smoothness is equivalent to HomS(T1, X) −→ HomS(T,X) being surjective for
any affine S-thickening T ↪→ T1.

Smoothness is a local property on X.2 If p ∈ X, we say that π is smooth at p if there exists
a open neighborhood U of p such that π|U : U −→ S is smooth.

It also follows immediately from the definition that smoothness is preserved by base change:
for any Cartesian diagram of schemes

X ′ X

S′ S

�

if X −→ S is smooth, then X ′ −→ S′ is smooth.

Example 2.5. To start to get a feeling of what’s going on, consider an affine plane curve over
a field k defined by some f ∈ k[x, y]:

X = Spec k[x, y]/(f)

Let us consider a diagram

X

Spec k Spec k[ε] Spec k

p

θ

where Spec k −→ Spec k[ε] is the affine thickening defined in Example 2.2. Note that p = (a, b)
corresponds to a point in k2 such that f(p) = f(a, b) = 0. A lifting θ of p corresponds to a
k-morphism

θ∗ : k[x, y]/(f) −→ k[ε]

such that θ∗(x) = a+ uε, v∗(y) = b+ vε, with (u, v) ∈ k2 satisfying

f(a+ uε, b+ vε) = 0.

Since ε2 = 0, we conclude from the Taylor formula

f(x, y) = f(a, b)+
∂f

∂x
(a, b)(x−a)+

∂f

∂y
(a, b)(y−b)+g, g ∈ ((x−a)2, (x−a)(y−b), (y−b)2)

that

f(a+ uε, b+ vε) =

(
∂f

∂x
(a, b)u+

∂f

∂y
(a, b)v

)
ε

2Update: actually, this is not immediate from this definition (see exercise sheet).
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Thus, liftings θ of p = (a, b) correspond to pairs (u, v) ∈ k2 such that

∂f

∂x
(a, b)u+

∂f

∂y
(a, b)v = 0.

These are, intuitivelly, tangent vectors of X at p.

Remark 2.6. Incidentally, if morphisms Spec k[ε] −→ S are to be seen as tangent vectors of S,
then smoothness of a morphism X −→ S implies that every tangent vector of S can be lifted
to X. This is how a “submersion” is defined in differential geometry. We will make this more
precise in the next lecture.

In the next example we characterize smoothness of an affine plane curve.

Example 2.7. Let us keep the same notation of last example and let us prove the following:
X = Spec k[x, y]/(f) is smooth over Spec k if and only if(

f,
∂f

∂x
,
∂f

∂y

)
= (1) (2.1)

as an ideal of k[x, y]. Let us first assume that X is smooth over Spec k. Define

X1 = Spec k[x, y]/(f2)

so that X ↪→ X1 is an affine thickening. By smoothness, there exists a morphism r : X1 −→ X
making the diagram

X

X X1 Spec k

id
r

commute; that is, r is a retraction. On the level of rings, we obtain a section

k[x, y]/(f2)

k[x, y]/(f)

r∗

Thus
r∗(x+ (f)) = x+ g1f + (f2), r∗(y + (f)) = y + g2f + (f2)

where g1, g2 ∈ k[x, y] satisfy
f(x+ g1f, y + g2f) ∈ (f2).

It follows from Taylor’s formula that

f(x+ g1f, y + g2f)−
(
f +

∂f

∂x
g1f +

∂f

∂y
g2f

)
∈ (f2)

so that

1 +
∂f

∂x
g1 +

∂f

∂y
g2 ∈ (f).

in k[x, y]. This proves that f satisfies (2.1). Conversely, if f , ∂f/∂x, and ∂f/∂y are coprime,
then a section r∗ : T −→ X as above exists. Thus, for any solid diagram of k-algebras

R

k[x, y]/(f) R/I

4



where R is a k-algebra and I ⊂ R is an ideal such that I2, we can define a dotted arrow by
lifting k[x, y]/(f) −→ R/I to k[x, y]/(f2) −→ R (which is always possible) and composing with
r∗:

k[x, y]/(f2) R

k[x, y]/(f) R/I

r∗

This proves that X is smooth over Spec k.

Exercise 2.8 (Jacobian criterion for affine hypersurfaces). Generalize the last example as fol-
lows. Prove that if k is a field and f ∈ k[x1, . . . , xn], then the k-schemeX = Spec k[x1, . . . , xn]/(f)
is smooth if and only if (

f,
∂f

∂x1
, . . . ,

∂f

∂xn

)
= (1)

as ideals in k[x1, . . . , xn].

Example 2.9. An
S is clearly smooth over S. As smoothness is a local property, Pn

S is also
smooth over S.

3 Smoothness and differentials

We start by clarifying the relation between retractions of thickenings and derivations.

Example 3.1 (Retractions and derivations). Consider an affine R-thickening i : X ↪→ X1 of
ideal I. If we denote X = SpecA and X1 = SpecA1 (so that A = A1/I), then any pair of
retractions r1, r2 : X1 −→ X of i define a derivation

D := r∗2 − r∗1 ∈ DerR(A, I).

Indeed, note first that since r1 and r2 are both retractions of i, for any f ∈ A, r∗2(f) and r∗1(f)
map to the same element f in the quotient A1/I = A, so that D(f) = r∗2(f)− r∗1(f) ∈ I. Now
observe that, since I2 = 0, the A-module structure of I is given by f · x = f1x, where f1 is any
element of A1 lifting f (here, f ∈ A and x ∈ I); in particular, both r∗1 and r∗2 induce the same
A-module structure on I. It is now easy to check that D is a derivation:

D(fg) = r∗2(f)r∗2(g)− r∗1(f)r∗1(g)

= r∗2(f)(r∗2(g)− r∗1(g)) + r∗1(g)(r∗2(f)− r∗1(f))

= fD(g)− gD(f).

Remark 3.2. For X = SpecA over S = SpecR, the definition of Ω1
A/R via the augmentation

ideal shows that the universal derivation d : A −→ Ω1
A/R is given by the above procedure. The

first infinitesimal neighborhood of the diagonal ∆ : X −→ X ×S X gives a thickening of X and
d corresponds to the retractions given by the two projections.

Here’s the particularly useful special case of thickenings that already come with a retraction.

Example 3.3 (Linear thickenings). Let A be a ring and X = SpecA. For any A-module M ,
we can define a ring structure on

A[M ] := A⊕M
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by
(f,m) · (f ′,m′) = (ff ′, fm′ + f ′m).

Then M gets identified via m 7−→ (0,m) to an ideal A[M ] such that M2 = 0, and the map
A[M ] −→ A given by the first projection induces an isomorphism A[M ]/M ∼= A. Thus

X ↪→ SpecA[M ] =: X1

is an affine thickening with ideal M .3 Note that there is an obvious retraction X1 −→ X induced
by the inclusion in the first coordinate A −→ A[M ]. Thus, by last example, if A is an R-algebra,
elements D ∈ DerR(A,M) correspond to retractions r : X1 −→ X via r∗(f) = (f,D(f)).

Remark 3.4 (Geometric interpretation of linear thickenings). Let X be a scheme, F be a
quasi-coherent sheaf over X and define X1 to be the ‘first infinitesimal neighborhood’ of the
zero section

V(F)

X

0

Namely, if I denotes the ideal of the zero section 0 : X −→ V(F), then X1 is the subscheme of
V(F) defined by I2. Then the zero section factors through a closed immersion X ↪→ X1 wich is
a thickening of ideal I. Finally, we remark that I is isomorphic to F as a quasi-coherent sheaf
over X.

We now come to the main theorems of this lecture.

Theorem 3.5. If X is a smooth S-scheme, then Ω1
X/S is a vector bundle over X.

Proof. Since X is of finite presentation over S, the OX -module Ω1
X/S is coherent. To prove that

Ω1
X/S is locally free, we can assume that X = SpecA and S = SpecR are affine. Thus, we want

to prove that Ω1
A/R is a projective A-module, i.e., that every exact sequence of A-modules

0 −→M −→ N
α−→ Ω1

A/R −→ 0 (3.1)

splits.
Given an extension of Ω1

A/R by M as above, we construct a thickening of X = SpecA with

ideal M as follows (see Example 3.3). Consider the subring

A1 = {(f, n) ∈ A[N ] | df = α(n)} ≤ A[N ].

Note that M = A1 ∩ N is an ideal of A satisfying M2 = 0, and that A = A1/M via the first
projection A1 −→ A. Thus the induced morphism

i : X = SpecA ↪→ SpecA1 =: X1

is a thickening of X with ideal M .
If X is smooth over S, then there exists r : X1 −→ X such that

X

X X1 Si

id
r

3In general, an affine thickening X ↪→ X1 with ideal M is also called an extension of X by M ; the extension
given by A[M ] as above is called the trivial extension.
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commutes; that is, r : X1 −→ X is a retraction of i : X ↪→ X1. In particular, r∗ : A −→ A1 is
an R-algebra morphism of the form

f 7−→ (f,D(f))

for some D ∈ DerR(A,N) satisfying α(D(f)) = df . By the universal property of Ω1
A/R, D

induces a splitting of (3.1). �

Definition 3.6. The relative dimension of a smooth morphism π : X −→ S is the rank of the
vector bundle Ω1

X/S . If π : X −→ S is only smooth at p ∈ X, then the relative dimension of π

at p is the rank of Ω1
X/S,p.

We will relate the notion of relative dimension with the usual dimension theory for schemes
in the next lecture.

Theorem 3.7. Consider an S-morphism ϕ : X −→ Y . If ϕ is smooth, then

0 −→ ϕ∗Ω1
Y/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0

is exact and locally split.

Proof. We can assume everything is affine: X = SpecB, Y = SpecA, and S = SpecR. It is
sufficient to prove that for any B-module N , the sequence

0 −→ DerA(B,N) −→ DerR(B,N) −→ DerR(A,N) −→ 0

is split exact, or yet that the restriction map

DerR(B,N) −→ DerR(A,N)

D 7−→ D|A

admits a section.
Let B1 = B[N ]. Any D ∈ DerR(A,N) induces an A-algebra structure

A −→ B1

f 7−→ (f,D(f))

on B1 making the first projection B1 −→ B a morphism of A-algebras. Since X = SpecB is
smooth over Y = SpecA, there exists a retraction r : X1 := SpecB1 −→ X. The morphism
r∗ : B −→ B1 is of the form g 7−→ (g, D̃(g)) for a unique R-derivation D̃ : B −→ N . Finally,
we can check that

D 7−→ D̃

defines a section of the restriction DerR(B,N) −→ DerR(A,N). �

Theorem 3.8 (Conormal exact sequence). Consider an S-immersion i : Z ↪→ X. If Z is
smooth over S, then

0 −→ CZ/X
d−→ i∗Ω1

X/S −→ Ω1
Z/S −→ 0.

is exact and locally split.
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Proof. We can assume everything is affine: S = SpecR, X = SpecA, and Z = SpecA/I for
some ideal I ⊂ A. Consider the first infinitesimal neighborhood of Z in X, i.e., the subscheme
Z1 = SpecA/I2 defined by I2. Thus i : Z ↪→ X factors through a thickening i1 : Z ↪→ Z1.

Since Z is smooth over S, there exists a retraction r : Z1 −→ Z of i1 : Z ↪→ Z1, which yields
D ∈ DerR(A/I2, I/I2) defined by

D(f) = f − (i ◦ r)∗(f).

One can now check that D, seen in DerR(A, I/I2), induces a splitting

I/I2 Ω1
A/R ⊗R A/I Ω1

(A/I)/R 0.

〈D,−〉

�

Note that the above proof actually give us more: whenever everything is affine, the conormal
sequence is split exact, and the splitting is given by some R-derivation D : A −→ I/I2.

Example 3.9. Taking X = An
k , and Z the hypersurface defined by some f ∈ A = k[x1, . . . , xn].

If Z is smooth over k, then it follows from the above theorem that there existsD ∈ Derk(A, (f)/(f)2)
such that D(f) = f+(f)2. Since any D is a linear combination of ∂

∂xi
, we recover one implication

of Exercise 2.8.
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