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1 Unramified and étale morphisms

Definition 1.1 (Unramified morphisms). Let π : X −→ S be a morphism of schemes. We say
that π is unramified if

1. π is locally of finite presentation;

2. for every diagram

X

T T1 S

π

where T ↪→ T1 is an affine thickening, there exists at most one morphism T1 −→ X making

X

T T1 S

π

commute.

Remark 1.2. Unramifiedness is equivalent to HomS(T1, X) −→ HomS(T,X) being injective
for any affine S-thickening T ↪→ T1.

For instance, any immersion is unramified. On the other hand, the following exercise deals
with the prototypical example of a “ramified covering”.

Exercise 1.3. Let πn : A1
C −→ A1

C be defined by π∗n(t) = tn. Then πn is unramified if and
only if n = 1.

We can characterize unramifiedness purely in terms of differentials as follows.

Theorem 1.4. A morphism of schemes X −→ S is unramified if and only if it is locally of
finite presentation and Ω1

X/S = 0.
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Proof. We can assume X = SpecA and S = SpecR. Recall that for any A-module M , elements
of DerR(A,M) correspond to S-retractions X1 = SpecA[M ] −→ X. If X is unramified over S,
then there can be only one such retraction: namely the one given by the inclusion A −→ A[M ]
in the first coordinate. This proves that 0 = DerR(A,M) = HomA(Ω1

A/R,M). Thus Ω1
A/R = 0.

Conversely, if Λ is an R-algebra, I ⊂ Λ is an ideal such that I2 = 0 and ψ1, ψ2 : A −→ Λ are
two R-algebra morphisms which become equal modulo I, then D = ψ2 − ψ1 : A −→ I gives a
non-trivial element of DerR(A, I) (here I is seen as an A-module via ψ1 or ψ2). Since Ω1

A/R = 0,
we must have D = 0, i.e., ψ1 = ψ2. �

Definition 1.5 (Étale morphism). We say that a morphism of schemes X −→ S is étale if it
is smooth and unramified.

Thus, a morphism X −→ S is étale if it is locally of finite presentation and if for every solid
diagram

X

T T1 S

π

where T −→ T1 is a thickening, there exists a unique (dotted) morphism T1 −→ X making
everything commute. Here, T −→ T1 is not necessarily affine. This is because the unicity in
the definition of étale morphisms actually shows that we can glue liftings on affine pieces.

The basic examples of étale morphisms are open immersions and standard étale algebras.
Note that a closed immersion is unramified but is (almost) never étale!

Exercise 1.6. Prove directly from the definition that a standard étale algebra A over R is
étale. We recall that A = R[x]g/(f) where f, g ∈ R[x], with f monic and such that the image
of f ′ in A is a unit. Hint: same spirit of Newton’s method or Hensel’s lemma.

An étale morphisms is the analog in algebraic geometry of a “local isomorphism” in differen-
tial geometry, although it will not be in general a local isomorphism in the category of schemes.
The following proposition makes this analogy a bit more precise.

If X is a scheme and p ∈ X, we denote by ÔX,p the completion of the local ring OX,p with
respect to its maximal ideal mp.

Proposition 1.7. Let π : X −→ S be étale at p ∈ X and assume that kπ(p)
∼−→ kp. Then the

morphism of local rings OS,π(p) −→ OX,p induces an isomorphism

ÔS,π(p)
∼−→ ÔX,p.

Proof. Consider the solid diagram

Spec kp SpecOX,p/m2
p X

Spec kπ(p) SpecOS,π(p)/m2
π(p) S

π

where the bended arrow is given by the inverse of kπ(p)
∼−→ kp. By smoothness, there exists a

dotted arrow making the whole diagram commute. The commutativity of the diagram implies
that this dotted arrow factors through a section

SpecOS,π(p)/m2
π(p) −→ SpecOX,p/m2

p
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of SpecOX,p/m2
p −→ SpecOS,π(p)/m2

π(p). This section is actually an isomorphism, as can be
readily verified from the unicity in the definition of unramifiedness. We have thus proved the
isomorphism

OS,π(p)/m2
π(p)

∼−→ OX,p/m2
p.

Similarly, by induction we prove that

OS,π(p)/mn
π(p)

∼−→ OX,p/mn
p

for every n ∈ N, thereby obtaining an isomorphism on the completions:

ÔS,π(p)
∼−→ ÔX,p.

�

Exercise 1.8. In general (that is, no condition on the residue fields), prove that ÔX,p is a finite

ÔS,π(p) algebra isomorphic to a finite direct sum
⊕n

i=1 ÔS,π(p) as an ÔS,π(p)-module.

2 Local coordinates

Next, we introduce local coordinates in algebraic geometry.

Definition 2.1. Let X be an S-scheme and p ∈ X. An étale S-chart of X at p is a family
(x1, . . . , xn) of sections of OX in a neighborhood U of p such that the induced S-morphism

x = (x1, . . . , xn) : U −→ An
S

is étale.

Warning: this is non-standard terminology! When X is smooth over S, the above definition
can be reformulated purely in terms of differentials. For this, we need some preparation.

Proposition 2.2 (Étaleness differential criterion). Let ϕ : X −→ Y be a morphism of S-
schemes locally of finite presentation and assume that X is smooth over S. Then ϕ is étale if
and only if ϕ∗Ω1

Y/S −→ Ω1
X/S is an isomorphism.

Proof. By Theorem 1.4 and Theorem 3.7 of last lecture the only thing there is to prove is that
ϕ is smooth if ϕ∗Ω1

Y/S
∼−→ Ω1

X/S .
We can assume X = SpecB, Y = SpecA, and S = SpecR. Consider a diagram of rings

B

Λ/I Λ A

R

ϕ

ρ

where I2 = 0 in Λ. Since X is smooth over S, there exists an R-algebra morphism ψ : B −→ Λ
reducing to ϕ modulo I. The idea is to modify ψ into an A-algebra morphism ψ̃ : B −→ Λ
reducing to ϕ modulo I. Define

D : A −→ I, f 7−→ ρ(f)− ψ(f).
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If I is seen as a B-module via ψ (thus, also an A-module via A −→ B), then D ∈ DerR(A, I).
By hypothesis, there exists D̃ ∈ DerR(B, I) lifting D. We define

ψ̃ = ψ + D̃ : B −→ Λ.

It is easy to check, using that D̃(B) ⊂ I and I2 = 0, that ψ̃ is an A-algebra morphism reducing
to ϕ modulo I. �

Remark 2.3 (Smoothness differential criterion). We have actually proved that under the same
hypothesis of the above theorem, X is smooth over Y if and only if

0 −→ ϕ∗Ω1
Y/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0

is exact and locally split.

Theorem 2.4. Let X be a smooth S-scheme and p ∈ X. If (x1, . . . , xn) is a family of local
sections of OX in a neighborhood of p, then the following are equivalent:

1. (x1, . . . , xn) defines an étale S-chart at p;

2. (dx1, . . . , dxn) trivializes Ω1
X/S in a neighborhood of p;

3. If (dxi)p denotes the image of dxi in Ω1
X/S,p, then ((dx1)p, . . . , (dxn)p) is a basis of the

OX,p-module Ω1
X/S,p.

4. If dxi|p denotes the image of dxi in Ω1
X/S(p), then (dx1|p, . . . , dxn|p) is a basis of the

kp-vector space Ω1
X/S(p), where kp denotes the residue field of X at p.

An étale S-chart (x1, . . . , xn) can also be rightfully called a “system of local coordinates”.

Proof. Exercise. Hint: the equivalence 1 ⇐⇒ 2 follows from the above étaleness differential
criterion; the equivalence of 2 ⇐⇒ 3 ⇐⇒ 4 follows from the fact that Ω1

X/S is a vector bundle
combined with the next commutative algebra lemma. �

Lemma 2.5. Let A be a local ring with residue field k and M be a finite free A-module.

1. If (m1, . . . ,mr) is a family of elements of M whose image in M ⊗A k forms a k-basis,
then (m1, . . . ,mr) is a basis of the A-module M .

2. If S ⊂ M is any generating subset of M , then there exists m1, . . . ,mr in S such that
(m1, . . . ,mr) is a basis of M .

Proof. To prove 1, note first that M is necessarily of rank r. Indeed, since M is finite free, we
have rkAM = dimkM ⊗A k. Let (e1, . . . , er) be a basis of M , and write

mj =
r∑
i=1

fijei, fij ∈ A.

Let d ∈ A be the determinant of F = (fij) ∈ Mr×r(A). Since the image of (m1, . . . ,mr) in
M ⊗A k is a k-basis, the image of d in k is non-zero. Since A is local, this is equivalent to
d ∈ A×; thus F is invertible, and (m1, . . . ,mr) is a basis of M .

We now prove 2. Since M is finite, there exists m1, . . . ,ms ∈ S generating M . In particular,
their image in M ⊗A k generate it as a k-vector space. Thus s ≥ r, and up to reordering, we
may may assume that the image of (m1, . . . ,mr) in M ⊗A k is a k-basis. We conclude by an
application of 1. �
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The next corollary formalizes both the intuitive notion that a smooth scheme, say over a
field, should locally look like an affine space, and the algebro-geometric analog of the “local
form of a submersion”.

Corollary 2.6. An S-scheme X is smooth if and only if every point of X admits an étale
S-chart.

Proof. Sufficiency follows from the following facts: smoothness is a local property on the source,
every étale morphism is smooth, An

S −→ S is smooth, and composition of smooth morphisms
is smooth.

Conversely, if X −→ S is smooth at p ∈ X, then Ω1
X/S is a vector bundle on a neighborhood

of p. Thus Ω1
X/S,p is a finite free OX.p-module generated by df for f ∈ OX,p, and conclude by

an application of the above lemma. �

Corollary 2.7. Let k be a field and X be a k-scheme smooth at a rational point p ∈ X(k).
Then any local system of coordinates (x1, . . . , xn) at p induces an isomorphism

ÔX,p ∼= k[[x1, . . . , xn]].

Proof. If X is smooth at p, then it admits an étale chart at p. Now we just apply Proposition
1.7. �

Corollary 2.8. Let k be a field and X be a smooth algebraic variety1 over k. Then its connected
components are irreducible. If X is connected, then

dimX = rk Ω1
X/k.

Proof. To prove that every connected component is irreducible, it suffices to show that OX,p is
an integral domain for every closed point p of X. Working over the base change Xp = X ⊗k kp,
it follows from last corollary that

ÔXp,p
∼= kp[[x1, . . . , xn]],

so that ÔXp,p is an integral domain. Since OX,p injects into OXp,p, which injects into ÔXp,p (by
Krull’s intersection theorem), OX,p is also an integral domain.

To prove the dimension statement, observe first that n is the number of elements of a local
coordinate system at p, which coincides with rk Ω1

X/k,p by Theorem 2.4. On the other hand,
standard properties of the Krull dimension give:

n = dim kp[[x1, . . . , xn]] = dim ÔXp,p = dimOXp,p = dimOX,p

where the last equality follows from the fact that OXp,p = OX,p ⊗k kp is finite over OX,p. �

3 Other smoothness criteria

Theorem 3.1 (Jacobian criterion). Let i : Z ↪→ X be an S-immersion, and suppose that X is
smooth over S. Then Z is smooth over S at p ∈ Z if and only if the conormal sequence

0 −→ CZ/X −→ i∗Ω1
X/S −→ Ω1

Z/S −→ 0

is exact and locally split in a neighborhood of p.

1Here, ‘algebraic variety’ = ‘separated of finite type’.
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Proof. By last lecture, we only have to prove the necessity. We can assume that X = SpecA,
Z = SpecA/J for some ideal J ⊂ A, and S = SpecR. Consider a solid diagram

A/J

A

Λ/I Λ R

ϕ

ψ

where I2 = 0 in Λ. Since X is smooth over S, there exists a dotted R-algebra morphism
ψ : A −→ Λ making the diagram commute.

The idea is to modify ψ into ψ̃ : A −→ Λ such that ψ̃(f) = 0 for every f ∈ J . For this, we
can assume that

0 J/J2 Ω1
A/R ⊗R A/J Ω1

(A/J)/R 0

〈D,−〉

is exact and split by some D ∈ DerR(A, J/J2) satisfying D(f) = f + J2 for every f ∈ J . Since
ψ(f) ∈ I for every f ∈ J ,

D̃ : A −→ I, f 7−→ ψ(D(f))

is a well defined R-derivation, where the A-module structure of I is given by ψ. We set ψ̃ =
ψ − D̃. �

The Jacobian criterion in its classical form easily follows.

Corollary 3.2. Let i : Z ↪→ X be an S-immersion with ideal I ⊂ OX , and suppose that
X −→ S is smooth of relative dimension n. The following are equivalent:

1. Z −→ S is smooth at p ∈ Z, of relative dimension r.

2. If (x1, . . . , xn) is an étale S-chart of X at i(p), and if f1, . . . , fN are local generators of I at
i(p), then up to reindexing, I is generated by fr+1, . . . , fn at i(p) and (x1, . . . , xr, fr+1, . . . , fn)
defines an étale S-chart of X at i(p).

3. There exist sections fr+1, . . . , fn of OX in a neigborhood of i(p) generating I and such
that dfr+1|i(p), . . . , dfn|i(p) are linearly independent in Ω1

X/S(i(p)).

Proof. Exercise. �

Let us understand the relation of Jacobian matrices. With the same notation of the above
corolary, let us fix an étale S-chart (x1, . . . , xn) of X at i(p). For any section of OX in a
neighborhood of p we denote

df =

n∑
i=1

∂f

∂xi
dxi.

Then Z is smooth over S at p of relative dimension r if and only if there exist generating sections
fr+1, . . . , fn of I in a neighborhood of i(p) such that

rk

(
∂fi
∂xj

(p)

)
r+1≤i≤n,1≤j≤n

= n− r.
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Finally we disccuss the relation between smoothness and flatness, and a fiberwise criterion
for smoothness.

Recall that for any A-module M , the functor M ⊗A − is right exact. We say that M is flat
if M ⊗A − is also left exact. This is equivalent to TorRi (M,N) = TorRi (N,M) = 0 for every
A-module N and every i ≥ 1.

For instance, if A is a field, then every A-module is flat. In general, the basic counterexample
to flatness is given by M = A/I where I ⊂ A is any non-trivial ideal.

We say that a morphism of rings A −→ B is flat if B is flat over A as an A-module. Finally,
a morphism of schemes ϕ : X −→ Y is flat if OY,ϕ(p) −→ OX,p is flat for every p ∈ X.

Proposition 3.3. Every smooth morphism π : X −→ S is flat.

Proof. We could prove this directly (see [1] p. 53), but we take a shortcut.
Since composition of flat morphisms is flat, An

S −→ S is clearly flat, and X can be covered
by étale S-scharts, we can assume that π is étale. By “reduction to Noetherian hypotheses”,
we can assume that S is locally Noetherian.

It follows from Exercise 1.8 that, for any p ∈ X, ÔS,π(p) −→ ÔX,p is flat. This immediately
implies that OS,π(p) −→ OX,p by a general flatness criterion for local rings (see [2] Theorem
22.4). �

A nice consequence of flatness is that a morphism that is flat and locally of finite presentation
is open (see any book on algebraic geometry). In particular, every smooth morphism is open.
Note that an analogous fact is true for submersions in differential geometry.

Theorem 3.4. Let π : X −→ S be locally of finite presentation. Then π is smooth if and only if
it is flat and the fibers Xs = X ×S Spec ks −→ Spec ks are smooth for every closed point s ∈ S.

Proof. By the above proposition we only need to prove the sufficiency. For this, up to localizing,
we can assume that S = SpecR where R is a local ring with residue field k, and X = SpecA
where A = R[x1, . . . , xn]/I for some ideal I ⊂ R[x1, . . . , xn].

Let p ∈ X lying above the closed point of S. As X ⊗R k is smooth at p, up to considering
smaller open neighborhood of p in X, it follows from the Jacobian criterion that there exist
J = (fr+1, . . . , fr) ⊂ I such that J⊗Rk = I⊗Rk and dfi|p are linearly independent in Ω1

An
k/k

(p).

Let B = R[x1, . . . , xn]/J , so that we have an exact sequence

0 −→ I/J −→ B −→ A −→ 0

Since R −→ A is flat, we have TorR1 (A, k) = 0, so that

0 −→ I/J ⊗R k −→ B ⊗R k
∼−→ A⊗R k −→ 0

is exact. This proves that I/J⊗R k = 0, so that I/J = 0 by Nakayama’s lemma. Thus X −→ S
is smooth at p by the Jacobian criterion. �
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