Calculus on Schemes - Lecture 4

Tiago J. Fonseca

May 28, 2019

Contents

1 The tangent bundle

2 Algebraic curves

1 The tangent bundle

We now introduce the dual point of view on differential forms.
Definition 1.1. Let X be an S-scheme. The tangent sheaf of X over S is defined by

$$
T_{X / S}=\left(\Omega_{X / S}^{1}\right)^{\vee}:=\mathcal{H o m}_{\mathcal{O}_{X}}\left(\Omega_{X / S}^{1}, \mathcal{O}_{X}\right) .
$$

Sections of $T_{X / S}$ are called vector fields.
One can also think of the tangent sheaf as a sheaf of derivations. If $U=\operatorname{Spec} A$ is an affine open subset in X mapping to $V=\operatorname{Spec} R$ in S, then $\Gamma\left(U, T_{X / S}\right)=\operatorname{Der}_{R}(A)$.

Remark 1.2. Tangent sheaves also have another piece of structure: the Lie bracket. We will come back to this in the next lecture when we talk about connections.

The tangent sheaf is coherent when X is locally of finite type over S, and it is a vector bundle when X is smooth over S (because $\Omega_{X / S}^{1}$ is). In this last case, we call $T_{X / S}$ the tangent bundle of X over S.

Example 1.3. The tangent bundle $T_{\mathbf{A}_{R}^{n} / R}$, where $\mathbf{A}_{R}^{n}=\operatorname{Spec} R\left[x_{1}, \ldots, x_{n}\right]$ is trivialized by the vector fields $\partial / \partial x_{i}$, for $i=1, \ldots, n$.

Exercise 1.4. Describe the global vector fields on \mathbf{P}_{R}^{1}.
Now, let $\varphi: X \longrightarrow Y$ be a morphism of S-schemes. Then we have a natural morphism of \mathcal{O}_{X}-modules

$$
\varphi^{*} \Omega_{Y / S}^{1} \longrightarrow \Omega_{X / S}^{1}
$$

which induces

$$
\begin{equation*}
T_{X / S} \longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(\varphi^{*} \Omega_{Y / S}^{1}, \mathcal{O}_{X}\right) \tag{1.1}
\end{equation*}
$$

There is always a natural \mathcal{O}_{X}-morphism

$$
\varphi^{*} T_{Y / S} \longrightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(\varphi^{*} \Omega_{Y / S}^{1}, \mathcal{O}_{X}\right)
$$

which is not an isomorphism in general. However, if Y is smooth over S, then $\Omega_{Y / S}^{1}$ is a vector bundle over Y, and it is easy to show that the above morphism is an isomorphism.

Definition 1.5. Let $\varphi: X \longrightarrow Y$ be a morphism of S-schemes, and assume that Y is smooth over S. The differential of φ is the \mathcal{O}_{X}-morphism

$$
d \varphi: T_{X / S} \longrightarrow \varphi^{*} T_{Y / S}
$$

given by (1.1) after the identification $\varphi^{*} T_{Y / S} \cong \mathcal{H o m}_{\mathcal{O}_{X}}\left(\varphi^{*} \Omega_{Y / S}^{1}, \mathcal{O}_{X}\right)$.
The differential $d \varphi$ is also known as the "tangent map" and can be denoted by $T \varphi, D \varphi$, or even φ_{*}.

Remark 1.6. Suppose that $X=\operatorname{Spec} A$ and $S=\operatorname{Spec} R$ are affine, and assume that X is smooth over S. Let $f \in \Gamma\left(X, \mathcal{O}_{X}\right)=A$ be seen as a S-morphism $f: X \longrightarrow \mathbf{A}_{S}^{1}$. Since the tangent bundle $T_{\mathbf{A}_{S}^{1} / S}$ is trivial, one can see the differential of f as a morphism $d f: T_{X / S} \longrightarrow \mathcal{O}_{X}$. This coincides with $d f \in \Omega_{A / R}^{1}$ after the canonical identification $\Omega_{A / R}^{1}=\Gamma\left(X, T_{X / S}^{\vee}\right)$.
Proposition 1.7. Let $\varphi: X \longrightarrow Y$ be a morphism of S-schemes, and assume that Y is a smooth S-scheme. Then we have an exact sequence of \mathcal{O}_{X}-modules

$$
0 \longrightarrow T_{X / Y} \longrightarrow T_{X / S} \xrightarrow{d \varphi} \varphi^{*} T_{Y / S}
$$

If φ is smooth (then, in particular, X is also a smooth S-scheme), then we have an exact sequence of vector bundles

$$
0 \longrightarrow T_{X / Y} \longrightarrow T_{X / S} \xrightarrow{d \varphi} \varphi^{*} T_{Y / S} \longrightarrow 0
$$

Proof. Follows by duality from the corresponding sequences for differential forms.
In the above situation, $T_{X / Y}=\operatorname{ker} d \varphi$ is also known as the "vertical subbundle" of $T_{X / S}$ for $\varphi: X \longrightarrow Y$.

Proposition 1.8. Let $i: Z \hookrightarrow X$ be an immersion of smooth S-schemes. Then we have an exact sequence of vector bundles

$$
0 \longrightarrow T_{Z / S} \xrightarrow{d i} i^{*} T_{X / S} \longrightarrow N_{Z / X} \longrightarrow 0
$$

where $N_{Z / X}=C_{Z / X}^{\vee}=\mathcal{H o m}_{\mathcal{O}_{Z}}\left(C_{Z / X}, \mathcal{O}_{Z}\right)$ is the normal bundle of i.
Proof. Again, we just dualize the conormal exact sequence.
Let us now briefly discuss tangent spaces of smooth algebraic varieties. Let X be a smooth algebraic variety over a field k and, to simplify, let $p \in X(k)$ be a rational point. The fiber of $T_{X / k}$ at p is by definition

$$
T_{X / k}(p)=T_{X / k, p} \otimes_{\mathcal{O}_{X, p}} k_{p}=\operatorname{Hom}_{\mathcal{O}_{X, p}}\left(\Omega_{X / k, p}^{1}, \mathcal{O}_{X, p}\right) \otimes_{\mathcal{O}_{X, p}} k_{p}
$$

where $k_{p}=k$ is given the structure of an $\mathcal{O}_{X, p}$-module via $f \longmapsto f(p)$. Since $\Omega_{X / k, p}^{1}$ is a free $\mathcal{O}_{X, p}$-module, we have

$$
\operatorname{Hom}_{\mathcal{O}_{X, p}}\left(\Omega_{X / k, p}^{1}, \mathcal{O}_{X, p}\right) \otimes_{\mathcal{O}_{X, p}} k_{p}=\operatorname{Hom}_{\mathcal{O}_{X, p}}\left(\Omega_{X / k, p}^{1}, k_{p}\right)=\operatorname{Der}_{k}\left(\mathcal{O}_{X, p}, k_{p}\right)
$$

Thus

$$
T_{X / k}(p)=\left\{v \in \operatorname{Hom}_{k}\left(\mathcal{O}_{X, p}, k\right) \mid v(f g)=f(p) v(g)+g(p) v(f), \text { for every } f, g \in \mathcal{O}_{X, p}\right\}
$$

If $\varphi: X \longrightarrow Y$ is a k-morphism of smooth algebraic varieties and $p \in X(k)$, then the differential $d \varphi$ at p is explicitly given by

$$
\left.d \varphi\right|_{p}: T_{X / k}(p) \longrightarrow T_{Y / k}(\varphi(p)), \quad v \longmapsto v \circ \varphi^{*}
$$

where $\varphi^{*}: \mathcal{O}_{Y, \varphi(p)} \longrightarrow \mathcal{O}_{X, p}$ is the natural morphism of local rings induced by φ.

Remark 1.9 (Zariski tangent space). The Zariski tangent space of X at p is by definition $\operatorname{Hom}_{k}\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}, k\right)$. The conormal sequence for $p: \operatorname{Spec} k \hookrightarrow X$ gives an isomorphism $\Omega_{X / k}^{1}(p) \cong$ $\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}$. Again, using that $\Omega_{X / k, p}^{1}$ is a free $\mathcal{O}_{X, p}$-module, we obtain a natural isomorphism

$$
T_{X / k}(p) \xrightarrow{\sim} \operatorname{Hom}_{k}\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}, k\right), \quad v \longmapsto\left(f+\mathfrak{m}_{p}^{2} \longmapsto v(f)\right)
$$

The inverse of the above map associates a linear functional $\theta: \mathfrak{m}_{p} / \mathfrak{m}_{p}^{2} \longrightarrow k$ to the derivation $f \longmapsto \theta(f-f(p))$.

Another point of view on tangent spaces is given by dual numbers. It is specially useful in theory of group schemes. Namely, let us denote by o the k-rational point of Spec $k[\epsilon]$ given by

$$
o^{*}: k[\epsilon] \longrightarrow k, \quad \epsilon \longmapsto 0
$$

A k-morphism of schemes $\theta: \operatorname{Spec} k[\epsilon] \longrightarrow X$ satisfying $\theta(o)=p$ corresponds to k-morphisms of algebras $\theta^{*}: \mathcal{O}_{X, p} \longrightarrow k[\epsilon]$ sending \mathfrak{m}_{p} to (ϵ). Thus, θ^{*} is necessarily of the form

$$
\theta^{*}(f)=f(p)+v(f) \epsilon
$$

where $f(p) \in k$ is the image of f modulo \mathfrak{m}_{p} and $v \in \operatorname{Der}_{k}\left(\mathcal{O}_{X, p}, k\right)$. Thus, we have a bijection

$$
T_{X / k}(p) \xrightarrow{\sim}\left\{\theta \in \operatorname{Hom}_{k}(\operatorname{Spec} k[\epsilon], X) \mid \theta(o)=p\right\}
$$

When X is an algebraic group over k, then $\operatorname{Hom}_{k}(\operatorname{Spec} k[\epsilon], X)=X(k[\epsilon])$ has a natural group structure, and we can prove (exercise!) that this induces the same vector space structure given by the identification with $T_{X / k}(p)$.
Example 1.10. Let $X=\mathrm{SL}_{2, \mathbf{C}}$, that is, X is the closed subscheme of $M_{2 \times 2, \mathbf{C}} \cong \mathbf{A}_{\mathbf{C}}^{4}$ defined by the equation det $=1$. The Jacobian criterion shows that X is a smooth \mathbf{C}-scheme. Let $e \in X(\mathbf{C})$ be the identity. Then

$$
T_{X / \mathbf{C}}(e)=\left\{A \in M_{2 \times 2}(\mathbf{C}) \mid \operatorname{Tr} A=0\right\}
$$

Indeed, we can identify $T_{X / \mathbf{C}}(e)$ with the \mathbf{C}-vector space of matrices of the form

$$
V=\left(\begin{array}{cc}
1+a \epsilon & b \epsilon \\
c \epsilon & 1+d \epsilon
\end{array}\right)
$$

such that $\operatorname{det} V=1$. But since $\epsilon^{2}=0$, we have $1=\operatorname{det} V=(1+a \epsilon)(1+d \epsilon)-(b \epsilon)(c \epsilon)=$ $1+(a+d) \epsilon$, so that $a+d=0$.

Exercise 1.11. Let $\pi: X \longrightarrow S$ be a morphism of schemes, and define the Picard functor $\operatorname{Pic}_{X / S}$ by

$$
\operatorname{Pic}_{X / S}(T)=\operatorname{Pic}\left(X \times_{S} T\right) / \operatorname{Pic}(T) \quad\left(T \in \operatorname{Sch}_{/ S}\right)
$$

We say that $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{S}$ holds universally if $\left(\pi_{T}\right)_{*} \mathcal{O}_{X \times_{S} T}=\mathcal{O}_{T}$ for every S-scheme T. For instance, this holds if π is proper, flat, surjective and with geometrically integral fibers. Now, let $S=\operatorname{Spec} k$ where k is a field, assume that $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{S}$ holds universally, and that $\operatorname{Pic}_{X / k}$ is representable by a smooth k-scheme. Let $e \in \operatorname{Pic}_{X / k}(k)=\operatorname{Pic}(X)$ be given by the trivial line bundle \mathcal{O}_{X} on X. Prove that there's a natural isomorphism of k-vector spaces

$$
T_{\operatorname{Pic}_{X / k} / k}(e)=H^{1}\left(X, \mathcal{O}_{X}\right)
$$

In particular, the tangent space at the origin of an elliptic curve E is naturally isomorphic to $H^{1}\left(E, \mathcal{O}_{E}\right)$. In general, if A is an abelian variety over k, and A^{\vee} denotes the dual abelian variety, then the tangent space at the origin of A^{\vee} is naturally isomorphic to $H^{1}\left(A, \mathcal{O}_{A}\right)$.

2 Algebraic curves

Let k be a field.
Definition 2.1. An algebraic curve over k is an algebraic variety over k such that all of its irreducible components have dimension 1.

Thus, $\mathbf{A}_{k}^{1}, \mathbf{P}_{k}^{1}$, and Spec $k[x, y] /\left(y^{2}-x^{3}\right)$ are algebraic curves.
Example 2.2 (Hyperelliptic curves). Let $f(x) \in k[x]$ be of degree d, and assume that over an algebraic closure \bar{k} of k we have $f(x)=\prod_{i=1}^{d}\left(x-a_{i}\right)$, with $a_{i} \in \bar{k}$ pairwise distinct. Set

$$
U:=\operatorname{Spec} k[x, y] /\left(y^{2}-f(x)\right)
$$

and

$$
V:= \begin{cases}\operatorname{Spec} k[t, s] /\left(s^{2}-t^{d} f(1 / t)\right) & d=2 e \\ \operatorname{Spec} k[t, s] /\left(s^{2}-t^{d+1} f(1 / t)\right. & d=2 e-1\end{cases}
$$

Note that $t^{d} f(1 / t)=\prod_{i=1}^{d}\left(1-a_{i} t\right)$. We can glue U and V via $(t, s)=\left(1 / x, y / x^{e}\right)$ to form a scheme X over k. Note that X is smooth over k by the Jacobian criterion. Also,

$$
X \backslash U= \begin{cases}\left\{\infty_{1}, \infty_{2}\right\} & d \text { even } \\ \{\infty\} & d \text { odd }\end{cases}
$$

where ∞_{1}, ∞_{2} are given by $(t, s)=(0, \pm 1)$ (resp. ∞ is given by $(t, s)=(0,0)$).
Let us now discuss the Riemann-Roch theorem. To keep things simple, we assume from now on that
X is a smooth, projective, geometrically connected curve over a field k
This is the algebraic analog of a compact Riemann surface, where the original Riemann-Roch was formulated. The only caveat is that we do not assume k to be algebraically closed or to be of characteristic 0 .

Recall that a divisor D on X is a formal finite linear combination of closed points of X with coefficients in \mathbf{Z} :

$$
D=n_{1}\left[p_{i}\right]+\cdots+n_{r}\left[p_{r}\right]
$$

where $n_{i} \in \mathbf{Z}$ and $p_{i} \in X$ is a closed point. These form an abelian group $\operatorname{Div}(X)$.
Lemma 2.3. For any closed point $p \in X, \mathcal{O}_{X, p}$ is a discrete valuation ring whose uniformizers are given by local coordinates x in a neighborhood of p.

Proof. We already know that $\mathcal{O}_{X, p}$ is a Noetherian domain; it suffices to prove that \mathfrak{m}_{p} is principal, generated by any local coordinate. It follows from the conormal exact sequence for $p: \operatorname{Spec} k_{p} \longrightarrow X$ that

$$
\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2} \cong \Omega_{X / k}^{1}(p)
$$

By last lecture, $1=\operatorname{dim} X=\operatorname{rk} \Omega_{X / k}^{1}=\operatorname{dim}_{k_{p}} \Omega_{X / k}^{1}(p)=\operatorname{dim}_{k_{p}} \mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}$. This proves that \mathfrak{m}_{p} is principal (Nakayama's lemma); it also follows from the above isomorphism that a generator is given by a coordinate x since $d x(p) \neq 0$.

Let x be a local coordinate at p. If $f \in \operatorname{Frac} \mathcal{O}_{X, p} \backslash\{0\}$, we denote by $\operatorname{ord}_{p}(f) \in \mathbf{Z}$ the unique integer such that

$$
f=u x^{\operatorname{ord}_{p}(f)}
$$

for some $u \in \mathcal{O}_{X, p}^{\times}$. In particular we can define $\operatorname{ord}_{p}(f)$ for any rational function $f \in k(X)$ on X.

Example 2.4 (Principal divisors). Let $f \in k(X) \backslash\{0\}$ be a rational function. Then the principal divisor associated to f is defined by

$$
\operatorname{div}(f)=\sum_{p \in X \text { closed }} \operatorname{ord}_{p}(f)[p]
$$

Note that $\operatorname{ord}_{p}(f)=0$ for all but finitely many closed points $p \in X$.
Locally, every divisor is a principal divisor (consider local coordinates).
We say that a divisor D is effective, and we denote $D \geq 0$, if $n_{i} \geq 0$ for every i. An effective divisor $D=\sum_{p} n_{p}[p]$ can be seen as a finite closed subscheme $D \subset X$ such that $\mathcal{I}_{D, p}=\mathfrak{m}_{p}^{n_{p}}$.

Definition 2.5. Let D be a divisor on X. We define a line bundle $\mathcal{O}_{X}(D)$ on X by

$$
\Gamma\left(U, \mathcal{O}_{X}(D)\right)=\left\{f \in k(U)|\operatorname{div}(f)+D|_{U} \geq 0\right\}
$$

Note that this is indeed a line bundle. Locally, V is an open subset where D is defined by some rational function g, then

$$
\left.\mathcal{O}_{X}(D)\right|_{V}=g^{-1} \mathcal{O}_{V}
$$

We thus obtain a morphism of abelian groups $\operatorname{Div}(X) \longrightarrow \operatorname{Pic}(X)$, i.e., $\mathcal{O}_{X}\left(D_{1}+D_{2}\right)=$ $\mathcal{O}_{X}\left(D_{1}\right) \otimes \mathcal{O}_{X}\left(D_{2}\right)$ and $\mathcal{O}_{X}(-D)=\mathcal{O}_{X}(D)^{\vee}$.

Example 2.6. If D is effective, then $\mathcal{O}(-D)=\mathcal{I}_{D}$ is the ideal of $D \subset X$.
Now, to every line bundle L on X, we can define its degree by

$$
\operatorname{deg} L=\chi(L)-\chi\left(\mathcal{O}_{X}\right)
$$

On the other hand, there's an obvious notion of degree for a divisor D :

$$
\operatorname{deg} D=n_{1} \operatorname{deg}\left(p_{1}\right)+\cdots+n_{r} \operatorname{deg}\left(p_{r}\right)
$$

where $\operatorname{deg}(p)=\left[k_{p}: k\right]$.
Theorem 2.7 (Riemann). For any divisor D on X, we have

$$
\operatorname{deg} \mathcal{O}_{X}(D)=\operatorname{deg} D
$$

Proof. Let us first assume that D is effective. Then we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{D} \longrightarrow 0
$$

Tensoring with $\mathcal{O}_{X}(D)$, we get

$$
\left.0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}(D) \longrightarrow \mathcal{O}_{X}(D)\right|_{D} \longrightarrow 0
$$

Since D is a finite subscheme of X, any line bundle over D is trivial, so that $\left.\mathcal{O}_{X}(D)\right|_{D} \cong \mathcal{O}_{D}$. Taking Euler characteristics, we obtain

$$
\chi\left(\mathcal{O}_{X}(D)\right)=\chi\left(\mathcal{O}_{X}\right)+\chi\left(\mathcal{O}_{D}\right)
$$

Since $\chi\left(\mathcal{O}_{D}\right)=\operatorname{dim}_{k} H^{0}\left(D, \mathcal{O}_{D}\right)=\operatorname{deg} D$, this proves that $\operatorname{deg} \mathcal{O}_{X}(D)=\operatorname{deg} D$.
If D is any divisor, we write $D=D^{+}-D^{-}$, where D^{+}and D^{-}are effective. We consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(-D^{-}\right) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{D^{-}} \longrightarrow 0
$$

and tensor by $\mathcal{O}_{X}\left(D^{+}\right)$to obtain

$$
\left.0 \longrightarrow \mathcal{O}_{X}(D) \longrightarrow \mathcal{O}_{X}\left(D^{+}\right) \longrightarrow \mathcal{O}_{X}\left(D^{+}\right)\right|_{D^{-}} \longrightarrow 0
$$

Since $\left.\mathcal{O}_{X}\left(D^{+}\right)\right|_{D^{-}} \cong \mathcal{O}_{D^{-}}$, taking Euler characteristics on the above sequence gives

$$
\chi\left(\mathcal{O}_{X}\left(D^{+}\right)\right)=\chi\left(\mathcal{O}_{X}(D)\right)+\operatorname{deg} D^{-}
$$

so that

$$
\operatorname{deg} D^{+}=\chi\left(\mathcal{O}_{X}\left(D^{+}\right)\right)-\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{X}(D)\right)-\chi\left(\mathcal{O}_{X}\right)+\operatorname{deg} D^{-}=\operatorname{deg} \mathcal{O}_{X}(D)+\operatorname{deg} D^{-}
$$

To get the actual Riemann-Roch formula, we use Serre duality to relate an H^{1} to an H^{0}. We take it as a black box.

Theorem 2.8 (Serre duality). Let X be a smooth projective variety of dimension n over k. Then $\operatorname{det} \Omega_{X / k}^{1}:=\Lambda^{n} \omega_{X / k}^{1}$ is a dualising sheaf for X. In particular, for every vector bundle \mathcal{E} over X and every $0 \leq i \leq n$, we have a canonical k-isomorphism

$$
H^{i}(X, \mathcal{E})^{\vee}=H^{n-i}\left(X, \mathcal{E}^{\vee} \otimes \operatorname{det} \Omega_{X / k}^{1}\right)
$$

Definition 2.9. The genus of X is defined by $g=\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X / k}^{1}\right)$.
By Serre duality, we could also define $g=\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)$. In particular,

$$
\operatorname{deg} \Omega_{X / k}^{1}=2 g-2 .
$$

Example 2.10. We've seen that \mathbf{P}_{k}^{1} is of genus 0 and any elliptic curve is of genus 1 .
Exercise 2.11. Let X be a hyperelliptic curve given by $y^{2}=f(x)$ as before.

1. Consider the divisor

$$
D= \begin{cases}e\left(\left[\infty_{1}\right]+\left[\infty_{2}\right]\right) & d=2 e \\ 2 e[\infty] & d=2 e-1\end{cases}
$$

Prove thtat $\left(1, x, x^{2}, \ldots, x^{e}, y\right)$ is a basis of $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$. Conclude that X is projective.
2. Prove that

$$
\left(\frac{d x}{y}, x \frac{d x}{y}, \ldots, x^{e-2} \frac{d x}{y}\right)
$$

is a basis of $H^{0}\left(X, \Omega_{X / k}^{1}\right)$. This shows that X is of genus $e-1$.
Theorem 2.12 (Riemann-Roch). For every divisor D on X, we have

$$
\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(D)\right)-\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(-D) \otimes \Omega_{X / k}^{1}\right)=\operatorname{deg} D+1-g
$$

Proof. We have

$$
\begin{aligned}
\operatorname{deg} \mathcal{O}_{X}(D) & =\chi\left(\mathcal{O}_{X}(D)\right)-\chi\left(\mathcal{O}_{X}\right) \\
& =\left(\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(D)\right)-\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}(D)\right)\right)-\left(\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}\right)-\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)\right) \\
& =\left(\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(D)\right)-\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(-D) \otimes \Omega_{X / k}^{1}\right)\right)-\left(1-\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X / k}^{1}\right)\right)
\end{aligned}
$$

Now we just apply Riemann's theorem.

