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1 The tangent bundle

We now introduce the dual point of view on differential forms.

Definition 1.1. Let X be an S-scheme. The tangent sheaf of X over S is defined by

TX/S = (Ω1
X/S)∨ := HomOX

(Ω1
X/S ,OX).

Sections of TX/S are called vector fields.

One can also think of the tangent sheaf as a sheaf of derivations. If U = SpecA is an affine
open subset in X mapping to V = SpecR in S, then Γ(U, TX/S) = DerR(A).

Remark 1.2. Tangent sheaves also have another piece of structure: the Lie bracket. We will
come back to this in the next lecture when we talk about connections.

The tangent sheaf is coherent when X is locally of finite type over S, and it is a vector
bundle when X is smooth over S (because Ω1

X/S is). In this last case, we call TX/S the tangent
bundle of X over S.

Example 1.3. The tangent bundle TAn
R/R, where An

R = SpecR[x1, . . . , xn] is trivialized by the
vector fields ∂/∂xi, for i = 1, . . . , n.

Exercise 1.4. Describe the global vector fields on P1
R.

Now, let ϕ : X −→ Y be a morphism of S-schemes. Then we have a natural morphism of
OX -modules

ϕ∗Ω1
Y/S −→ Ω1

X/S

which induces
TX/S −→ HomOX

(ϕ∗Ω1
Y/S ,OX). (1.1)

There is always a natural OX -morphism

ϕ∗TY/S −→ HomOX
(ϕ∗Ω1

Y/S ,OX)

which is not an isomorphism in general. However, if Y is smooth over S, then Ω1
Y/S is a vector

bundle over Y , and it is easy to show that the above morphism is an isomorphism.

1



Definition 1.5. Let ϕ : X −→ Y be a morphism of S-schemes, and assume that Y is smooth
over S. The differential of ϕ is the OX -morphism

dϕ : TX/S −→ ϕ∗TY/S

given by (1.1) after the identification ϕ∗TY/S ∼= HomOX
(ϕ∗Ω1

Y/S ,OX).

The differential dϕ is also known as the “tangent map” and can be denoted by Tϕ, Dϕ, or
even ϕ∗.

Remark 1.6. Suppose that X = SpecA and S = SpecR are affine, and assume that X is
smooth over S. Let f ∈ Γ(X,OX) = A be seen as a S-morphism f : X −→ A1

S . Since the
tangent bundle TA1

S/S
is trivial, one can see the differential of f as a morphism df : TX/S −→ OX .

This coincides with df ∈ Ω1
A/R after the canonical identification Ω1

A/R = Γ(X,T∨X/S).

Proposition 1.7. Let ϕ : X −→ Y be a morphism of S-schemes, and assume that Y is a
smooth S-scheme. Then we have an exact sequence of OX-modules

0 TX/Y TX/S ϕ∗TY/S
dϕ

If ϕ is smooth (then, in particular, X is also a smooth S-scheme), then we have an exact
sequence of vector bundles

0 TX/Y TX/S ϕ∗TY/S 0
dϕ

Proof. Follows by duality from the corresponding sequences for differential forms. �

In the above situation, TX/Y = ker dϕ is also known as the “vertical subbundle” of TX/S for
ϕ : X −→ Y .

Proposition 1.8. Let i : Z ↪→ X be an immersion of smooth S-schemes. Then we have an
exact sequence of vector bundles

0 TZ/S i∗TX/S NZ/X 0di

where NZ/X = C∨Z/X = HomOZ
(CZ/X ,OZ) is the normal bundle of i.

Proof. Again, we just dualize the conormal exact sequence. �

Let us now briefly discuss tangent spaces of smooth algebraic varieties. Let X be a smooth
algebraic variety over a field k and, to simplify, let p ∈ X(k) be a rational point. The fiber of
TX/k at p is by definition

TX/k(p) = TX/k,p ⊗OX,p
kp = HomOX,p

(Ω1
X/k,p,OX,p)⊗OX,p

kp

where kp = k is given the structure of an OX,p-module via f 7−→ f(p). Since Ω1
X/k,p is a free

OX,p-module, we have

HomOX,p
(Ω1

X/k,p,OX,p)⊗OX,p
kp = HomOX,p

(Ω1
X/k,p, kp) = Derk(OX,p, kp).

Thus

TX/k(p) = {v ∈ Homk(OX,p, k) | v(fg) = f(p)v(g) + g(p)v(f), for every f, g ∈ OX,p}.

If ϕ : X −→ Y is a k-morphism of smooth algebraic varieties and p ∈ X(k), then the differential
dϕ at p is explicitly given by

dϕ|p : TX/k(p) −→ TY/k(ϕ(p)), v 7−→ v ◦ ϕ∗

where ϕ∗ : OY,ϕ(p) −→ OX,p is the natural morphism of local rings induced by ϕ.
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Remark 1.9 (Zariski tangent space). The Zariski tangent space of X at p is by definition
Homk(mp/m

2
p, k). The conormal sequence for p : Spec k ↪→ X gives an isomorphism Ω1

X/k(p) ∼=
mp/m

2
p. Again, using that Ω1

X/k,p is a free OX,p-module, we obtain a natural isomorphism

TX/k(p)
∼−→ Homk(mp/m

2
p, k), v 7−→ (f + m2

p 7−→ v(f))

The inverse of the above map associates a linear functional θ : mp/m
2
p −→ k to the derivation

f 7−→ θ(f − f(p)).

Another point of view on tangent spaces is given by dual numbers. It is specially useful in
theory of group schemes. Namely, let us denote by o the k-rational point of Spec k[ε] given by

o∗ : k[ε] −→ k, ε 7−→ 0

A k-morphism of schemes θ : Spec k[ε] −→ X satisfying θ(o) = p corresponds to k-morphisms
of algebras θ∗ : OX,p −→ k[ε] sending mp to (ε). Thus, θ∗ is necessarily of the form

θ∗(f) = f(p) + v(f)ε

where f(p) ∈ k is the image of f modulo mp and v ∈ Derk(OX,p, k). Thus, we have a bijection

TX/k(p)
∼−→ {θ ∈ Homk(Spec k[ε], X) | θ(o) = p}

When X is an algebraic group over k, then Homk(Spec k[ε], X) = X(k[ε]) has a natural group
structure, and we can prove (exercise!) that this induces the same vector space structure given
by the identification with TX/k(p).

Example 1.10. Let X = SL2,C, that is, X is the closed subscheme of M2×2,C ∼= A4
C defined

by the equation det = 1. The Jacobian criterion shows that X is a smooth C-scheme. Let
e ∈ X(C) be the identity. Then

TX/C(e) = {A ∈M2×2(C) | TrA = 0}

Indeed, we can identify TX/C(e) with the C-vector space of matrices of the form

V =

(
1 + aε bε
cε 1 + dε

)
such that detV = 1. But since ε2 = 0, we have 1 = detV = (1 + aε)(1 + dε) − (bε)(cε) =
1 + (a+ d)ε, so that a+ d = 0.

Exercise 1.11. Let π : X −→ S be a morphism of schemes, and define the Picard functor
PicX/S by

PicX/S(T ) = Pic(X ×S T )/Pic(T ) (T ∈ Sch/S)

We say that π∗OX = OS holds universally if (πT )∗OX×ST = OT for every S-scheme T . For
instance, this holds if π is proper, flat, surjective and with geometrically integral fibers. Now,
let S = Spec k where k is a field, assume that π∗OX = OS holds universally, and that PicX/k is
representable by a smooth k-scheme. Let e ∈ PicX/k(k) = Pic(X) be given by the trivial line
bundle OX on X. Prove that there’s a natural isomorphism of k-vector spaces

TPicX/k /k(e) = H1(X,OX).

In particular, the tangent space at the origin of an elliptic curve E is naturally isomorphic to
H1(E,OE). In general, if A is an abelian variety over k, and A∨ denotes the dual abelian
variety, then the tangent space at the origin of A∨ is naturally isomorphic to H1(A,OA).
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2 Algebraic curves

Let k be a field.

Definition 2.1. An algebraic curve over k is an algebraic variety over k such that all of its
irreducible components have dimension 1.

Thus, A1
k, P1

k, and Spec k[x, y]/(y2 − x3) are algebraic curves.

Example 2.2 (Hyperelliptic curves). Let f(x) ∈ k[x] be of degree d, and assume that over an
algebraic closure k of k we have f(x) =

∏d
i=1(x− ai), with ai ∈ k pairwise distinct. Set

U := Spec k[x, y]/(y2 − f(x))

and

V :=

{
Spec k[t, s]/(s2 − tdf(1/t)) d = 2e

Spec k[t, s]/(s2 − td+1f(1/t) d = 2e− 1

Note that tdf(1/t) =
∏d

i=1(1 − ait). We can glue U and V via (t, s) = (1/x, y/xe) to form a
scheme X over k. Note that X is smooth over k by the Jacobian criterion. Also,

X \ U =

{
{∞1,∞2} d even

{∞} d odd

where ∞1,∞2 are given by (t, s) = (0,±1) (resp. ∞ is given by (t, s) = (0, 0)).

Let us now discuss the Riemann-Roch theorem. To keep things simple, we assume from now
on that

X is a smooth, projective, geometrically connected curve over a field k

This is the algebraic analog of a compact Riemann surface, where the original Riemann-Roch
was formulated. The only caveat is that we do not assume k to be algebraically closed or to be
of characteristic 0.

Recall that a divisor D on X is a formal finite linear combination of closed points of X with
coefficients in Z:

D = n1[pi] + · · ·+ nr[pr]

where ni ∈ Z and pi ∈ X is a closed point. These form an abelian group Div(X).

Lemma 2.3. For any closed point p ∈ X, OX,p is a discrete valuation ring whose uniformizers
are given by local coordinates x in a neighborhood of p.

Proof. We already know that OX,p is a Noetherian domain; it suffices to prove that mp is
principal, generated by any local coordinate. It follows from the conormal exact sequence for
p : Spec kp −→ X that

mp/m
2
p
∼= Ω1

X/k(p)

By last lecture, 1 = dimX = rk Ω1
X/k = dimkp Ω1

X/k(p) = dimkp mp/m
2
p. This proves that mp is

principal (Nakayama’s lemma); it also follows from the above isomorphism that a generator is
given by a coordinate x since dx(p) 6= 0. �
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Let x be a local coordinate at p. If f ∈ FracOX,p \ {0}, we denote by ordp(f) ∈ Z the
unique integer such that

f = uxordp(f)

for some u ∈ O×X,p. In particular we can define ordp(f) for any rational function f ∈ k(X) on
X.

Example 2.4 (Principal divisors). Let f ∈ k(X)\{0} be a rational function. Then the principal
divisor associated to f is defined by

div(f) =
∑

p∈X closed

ordp(f)[p].

Note that ordp(f) = 0 for all but finitely many closed points p ∈ X.

Locally, every divisor is a principal divisor (consider local coordinates).
We say that a divisor D is effective, and we denote D ≥ 0, if ni ≥ 0 for every i. An effective

divisor D =
∑

p np[p] can be seen as a finite closed subscheme D ⊂ X such that ID,p = m
np
p .

Definition 2.5. Let D be a divisor on X. We define a line bundle OX(D) on X by

Γ(U,OX(D)) = {f ∈ k(U) | div(f) +D|U ≥ 0}.

Note that this is indeed a line bundle. Locally, V is an open subset where D is defined by
some rational function g, then

OX(D)|V = g−1OV .

We thus obtain a morphism of abelian groups Div(X) −→ Pic(X), i.e., OX(D1 + D2) =
OX(D1)⊗OX(D2) and OX(−D) = OX(D)∨.

Example 2.6. If D is effective, then O(−D) = ID is the ideal of D ⊂ X.

Now, to every line bundle L on X, we can define its degree by

degL = χ(L)− χ(OX).

On the other hand, there’s an obvious notion of degree for a divisor D:

degD = n1 deg(p1) + · · ·+ nr deg(pr)

where deg(p) = [kp : k].

Theorem 2.7 (Riemann). For any divisor D on X, we have

degOX(D) = degD.

Proof. Let us first assume that D is effective. Then we have an exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0.

Tensoring with OX(D), we get

0 −→ OX −→ OX(D) −→ OX(D)|D −→ 0.

Since D is a finite subscheme of X, any line bundle over D is trivial, so that OX(D)|D ∼= OD.
Taking Euler characteristics, we obtain

χ(OX(D)) = χ(OX) + χ(OD)
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Since χ(OD) = dimkH
0(D,OD) = degD, this proves that degOX(D) = degD.

If D is any divisor, we write D = D+ −D−, where D+ and D− are effective. We consider
the exact sequence

0 −→ OX(−D−) −→ OX −→ OD− −→ 0.

and tensor by OX(D+) to obtain

0 −→ OX(D) −→ OX(D+) −→ OX(D+)|D− −→ 0

Since OX(D+)|D− ∼= OD− , taking Euler characteristics on the above sequence gives

χ(OX(D+)) = χ(OX(D)) + degD−

so that

degD+ = χ(OX(D+))− χ(OX) = χ(OX(D))− χ(OX) + degD− = degOX(D) + degD−.

�

To get the actual Riemann-Roch formula, we use Serre duality to relate an H1 to an H0.
We take it as a black box.

Theorem 2.8 (Serre duality). Let X be a smooth projective variety of dimension n over k.
Then det Ω1

X/k
:=
∧n ω1

X/k is a dualising sheaf for X. In particular, for every vector bundle E
over X and every 0 ≤ i ≤ n, we have a canonical k-isomorphism

H i(X, E)∨ = Hn−i(X, E∨ ⊗ det Ω1
X/k).

Definition 2.9. The genus of X is defined by g = dimkH
0(X,Ω1

X/k).

By Serre duality, we could also define g = dimkH
1(X,OX). In particular,

deg Ω1
X/k = 2g − 2.

Example 2.10. We’ve seen that P1
k is of genus 0 and any elliptic curve is of genus 1.

Exercise 2.11. Let X be a hyperelliptic curve given by y2 = f(x) as before.

1. Consider the divisor

D =

{
e([∞1] + [∞2]) d = 2e

2e[∞] d = 2e− 1

Prove thtat (1, x, x2, . . . , xe, y) is a basis of H0(X,OX(D)). Conclude that X is projective.

2. Prove that (
dx

y
, x
dx

y
, . . . , xe−2

dx

y

)
is a basis of H0(X,Ω1

X/k). This shows that X is of genus e− 1.

Theorem 2.12 (Riemann-Roch). For every divisor D on X, we have

dimkH
0(X,OX(D))− dimkH

0(X,OX(−D)⊗ Ω1
X/k) = degD + 1− g.

Proof. We have

degOX(D) = χ(OX(D))− χ(OX)

= (dimkH
0(X,OX(D))− dimkH

1(X,OX(D)))− (dimkH
0(X,OX)− dimkH

1(X,OX))

= (dimkH
0(X,OX(D))− dimkH

0(X,OX(−D)⊗ Ω1
X/k))− (1− dimkH

0(X,Ω1
X/k))

Now we just apply Riemann’s theorem. �
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