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1 Local systems of geometric origin

To every proper morphism π : X −→M of complex manifolds, every n ∈ N, and every ring A,
we can associate the sheaf Rnπ∗AX on M . This can be shown to be the sheafification of

U 7−→ Hn(π−1(U), A),

where Hn(·, A) denotes the usual singular (or Betti) cohomology for topological spaces with
coefficients in A. Most popular choices of A include: A = Z, A = Q, and A = C. Its stalk at
p ∈M is

(Rnπ∗AX )p = Hn(Xp, A)

where Xp = π−1(p).

Lemma 1.1. Let F be an abelian presheaf over M for which there exists a basis B of open
subsets of M satisfying the following property:

if U, V ∈ B, U ⊃ V , then the restriction F(U) −→ F(V ) is an isomorphism (C)

Then the sheafification of F is locally constant.

Proof. Since the sheafification of F is the sheaf of sections of the étalé space q : F −→ M , we
want to prove that q is a covering map. For this, it is sufficient to prove that, for every U ∈ B,
q−1(U) is the disjoint union of [s, U ] = {sp ∈ F | p ∈ U} for every s ∈ F(U).

For s, t ∈ F(U), if [s, U ] ∩ [t, U ] 6= ∅, then there exists V ∈ B such that s|V = t|V , so that
s = t by (C). This proves that the union

⋃
s[s, U ] ⊂ q−1(U) is disjoint. Now, if f ∈ q−1(U),

then there exists V ∈ B and s ∈ F(V ) such that sq(f) = f . By (C), we can extend s to a section
of F over U , so that f ∈ [s, U ]. �

Proposition 1.2. If π is surjective, proper and submersive then Rnπ∗AX is an A-local system
on M . Its stalks are singular cohomology groups modulo torsion.
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Proof. By Ehresmann’s fibration theorem, π is a locally trivial fibration of smooth manifolds.
This means that for every p ∈M there exists an open neighborhood U ⊂M of p such that

π−1(U) Xp × U

U

∼
C∞ isom

π pr2

Now we apply last lemma. �

Remark 1.3. Dually, we also have local systems given by homology : Rnπ∗AX := (Rnπ∗AX )∨.

Example 1.4 (Analytic Tate curve). Recall that a complex torus X is a Riemann surface
isomorphic to C/Λ, where Λ ⊂ C is a lattice (discrete cocompact subgroup). Under such
presentation, there’s a canonical identification H1(X,Z) ∼= Λ.

One can always choose Λ to be of the form Λ = Z + Zτ , for some τ ∈ C satisfying Im τ > 0.
We can thus describe a torus multiplicatively as follows: if q = e2πiτ , then

C/Λ
∼−→ C×/qZ, z 7−→ e2πiz.

Let D∗ = {z ∈ C | 0 < |z| < 1}, and define an action of Z on C× ×D∗ by

n · (z, q) = (zqn, q).

Such action is proper and free, and we denote by X the quotient complex manifold. It comes
equiped with a natural map π : X −→ D∗ whose fiber at q ∈ D∗ is the complex torus Xq =
C×/qZ.

Let us consider the local system R1π∗ZX . Its fiber at q ∈ D∗ is H1(C
×/qZ,Z), which

we can identify to the lattice Z + Zτ ⊂ C, where τ is any choice of complex number with
positive imaginary part satisfying e2πiτ = q. Under this identification, the monodromy action
of π1(D

∗, q) ∼= Z on AutZ(H1(C
×/qZ,Z)) is generated by

1 7−→ 1, τ 7−→ τ + 1.

Now, if π : X −→ M is the analytification of a proper smooth family X −→ S of C-
schemes, and S is projective, it follows from the Riemann-Hilbert correspondence, and from
GAGA, that there exists an algebraic vector bundle with integrable connection (E ,∇) over S
whose analytification coincides with (Rnπ∗CXan ⊗C OSan , id ⊗ d). What is this vector bundle
E? What if S is not projective?

2 Algebraic de Rham cohomology 1

Let X be an S-scheme. For every p ≥ 0, we define

Ωp
X/S =

p∧
Ω1
X/S .

This is a quasi-coherent sheaf over S which is locally generated by sections of the form

gdf1 ∧ · · · ∧ dfp.

If X is smooth of relative dimension n over S, then Ωp
X/S is a vector bundle over X of rank

(
n
p

)
.
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Lemma 2.1. There’s a unique family of morphisms of abelian sheaves d : Ωp
X/S −→ Ωp+1

X/S such
that

1. d : OX −→ Ω1
X/S is the usual differential.

2. If ω (resp. η) is a section of Ωp
X/S (resp. Ωq

X/S), then

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη

3. d2 = 0

Proof. Exercise. �

We thus obtain a complex of quasi-coherent OX -modules

0 −→ OX −→ Ω1
X/S −→ Ω2

X/S −→ · · · ,

the de Rham complex of X over S. Note that if X is smooth over S, of relative dimension n,
then Ωp

X/S = 0 for every p > n, so that we have the bounded complex of vector bundles

Ω•X/S : 0 −→ OX −→ Ω1
X/S −→ · · · −→ Ωn

X/S −→ 0.

Grothendieck realized that we can use the above complex to define a reasonable cohomology
theory, at least in the presence of good conditions such as smoothness and characteristic 0.

Let us start with a very simple setting.

Definition 2.2. Let k be a field and X = SpecA be a smooth affine scheme over k. The
algebraic de Rham cohomology of X over k is the cohomology of the complex Ω•A/k, i.e.,

Hn
dR(X/k) :=

ker(d : Ωn
A/k −→ Ωn+1

A/k )

im(d : Ωn−1
A/k −→ Ωn

A/k)
=

closed n-forms

exact n-forms
.

This mimics the usual recipe for computing the de Rham cohomology of a C∞ manifold,
but here we are only dealing with algebraic differential forms.

Example 2.3. The de Rham cohomology of A1
k is the cohomology of the complex

0 −→ k[x]
d−→ k[x]dx −→ 0∑

i≥0
aix

i 7−→

∑
i≥1

iaix
i−1

 dx

Since there are no differential forms of degree ≥ 2, we have Hn
dR(A1

k/k) = 0 for every n ≥ 2. In
degrees 0 and 1, we have

H0
dR(A1

k/k) = {f ∈ k[x] | df = 0} and H1
dR(A1

k/k) = k[x]dx/{df | f ∈ k[x]}.

1. If k is of characteristic 0, then df = 0 if and only if f = a0 ∈ k, so that

H0
dR(A1

k/k) = k.

Moreover, every ω =
(∑

i≥0 aix
i
)
∈ k[x]dx has a primitive, namely F =

∑
i≥0

ai
i+1x

i+1.

Thus
H1

dR(A1
k/k) = 0.
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2. If k is of positive characteristic p, strange things can happen. First of all, note that the
derivative of xp is 0 but xp is not in k! In fact,

H0
dR(A1

k/k) = k[xp].

For the same reason, xp−1dx doesn’t have a primitive! In fact,

H1
dR(A1

k/k) =
⊕
n≥1

kxnp−1dx

This example illustrates that algebraic de Rham cohomology is in general (but not always!)
pathological in positive characteristic. Next we restrict our attention to fields of characteristic
0.

Exercise 2.4. Let k be a field of characteristic 0. Compute the de Rham cohomology of An
k

for any n ≥ 1. In general, prove the following homotopy invariance property: for every smooth
affine scheme X over k and every n ∈ N, we have Hn

dR(X ×k A1
k/k) = Hn

dR(X/k).

Example 2.5. Let k be a field of characteristic 0, and consider Gm,k = A1
k\{0} = Spec k[x, x−1].

We must compute the cohomology of the complex

0 −→ k[x, x−1] −→ k[x, x−1]dx −→ 0∑
i

aix
i 7−→

(∑
i

iaix
i−1

)
dx

Note that here i is allowed to be negative. Now, the differential form dx/x ∈ k[x, x−1]dx admits
no primitive. In fact,

Hn
dR(Gm,k/k) =


k n=0

k
[
dx
x

]
n = 1

0 n ≥ 2

where [dx/x] denotes the class of dx/x in de Rham cohomology.

Exercise 2.6. Compute the de Rham chomology of A1
k \ {p1, . . . , pn}, where pi ∈ A1

k(k).

Example 2.7 (Punctured elliptic curve). Let k be a field of characteristic 0 and X = SpecA,
where A = k[x, y]/(y2 − f(x)), with f = 4x3 − g2x − g3 satisfying g32 − 27g23 6= 0. Recall that
Ω1
X/k is trivialized by

ω =
dx

y
= 2

dy

f ′(x)
,

so that the de Rham complex of X over k is given by

0 −→ A
d−→ Aω −→ 0.

Let us compute d explicitly. Every element h ∈ A can be written uniquely as h = P +Qy, with
P,Q ∈ k[x]. Thus

dh = P ′(x)dx+Q′(x)ydx+Q(x)dy =

((
Q′f +

1

2
Qf ′

)
+ P ′y

)
ω.

If Q has leading term adx
d, then Q′f + 1

2Qf
′ has leading term (4d+ 6)adx

d+2 (note that 4d+ 6
is never 0). Clearly, dh = 0 if and only if Q = 0 and P ′ = 0. Thus

H0
dR(X/k) = k.
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To compute H1, let η = (R + Sy)ω ∈ Ω1
A/k, with R,S ∈ k[x]. By the above formula for dh,

Syω is exact (take Q = 0 and P a primitive of S); thus we can write

η = Rω + exact

Now, choosing appropriate Q (and P = 0), we can inductively kill the leading terms of R until
we reach

η = (r0 + r1x)ω + exact.

We conclude that
H1

dR(X/k) = k[ω]⊕ k[xω].

Exercise 2.8. Let X : y2 = f(x) be the affine part of a hyperelliptic curve of genus g over a
field k of characteristic 0. Prove that dimkH

1
dR(X/k) = 2g.

Exercise 2.9 (Base change). Prove that if K is a field extension of k, then Hn
dR(X/k) ⊗k K

and Hn
dR(X ⊗k K/K) are naturally isomorphic.

Remark 2.10 (Comparison theorem and periods). Whenever k is of characteristic 0, the al-
gebraic de Rham cohomology coincides with what we expect (say, from singular cohomology).
This is no accident. Grothendieck proved that when k = C, then the map

comp : Hn
dR(X/C) −→ Hn(X(C),C) = Hom(Hn(X(C),Z),C), [ω] 7−→

∫
·
ω

is an isomorphism. This is by no means trivial, since there are much less algebraic differental
forms than analytic or smooth differential forms. We will come back to this in the next lecture.

For now, let us simply remark that the comparison isomorphism gives certain arithmetic
invariants of a variety defined over Q. Indeed, in this case there are two different Q-structures
on the cohomology of X: one given by H∗dR(X/Q), and the other given by H∗(X(C),Q). What
measures their difference are certain complex numbers called periods of X, given by

〈comp([ω]), σ〉 =

∫
σ
ω, ([ω] ∈ Hn

dR(X/Q), σ ∈ Hn(X(C),Q)).

For instance, if X = Gm,Q and σ ∈ H1(C
×,Z) is given by t 7−→ e2πit, then

2πi =

∫
σ

dx

x

is a period.

3 Hypercohomology

For a projective scheme, it makes no sense to define the algebraic de Rham cohomology using
global differential forms, since they may not exist (consider P1)! The general definition of
algebraic de Rham cohomology involves the consideration of hypercohomology.

Recall that if Γ : A −→ B is a left exact functor between abelian categories, and if A has
enough injectives (i.e., objects I ∈ A for which Hom(−, I) is exact), then we define derived
functors by

RnΓ(A) := Hn(Γ(I•))

where 0 −→ A −→ I• is an injective resolution of A ∈ A. Such definition does not depend on
the chosen injective resolution.

5



In fact, we can use any acyclic resolution. Recall that B ∈ A is said to be acyclic for Γ if
RnΓ(B) = 0 for every n ≥ 1. Then

RnΓ(A) = Hn(Γ(B•))

where 0 −→ A −→ B• is an acyclic resolution of A (i.e., each Bi is acyclic).

Example 3.1 (Čech cohomology). LetX be a separated scheme and consider the global sections
functor Γ(X,−) : AbX −→ Ab. Let U = (Ui)i be an affine covering of X. Denote Ui1···ir =
Ui1 ∩ · · · ∩ Uir and let ji1···ir : Ui1···ir ↪→ X be the inclusion. If F is a quasi-coherent abelian
sheaf on X, then it follows from Serre’s theorem that∏

i1,...,ir

ji1···ir,∗F|Ui1···ir

is acyclic. Thus

0 −→ F −→
∏
i

ji,∗F|Ui −→
∏
i1,i2

ji1i2,∗F|Ui1i2
−→ · · ·

is an acyclic resolution of F . For instance, this proves that

H1(X,F) =
{(fij)i,j ∈

∏
i,j F(Uij) | fij + fjk = fik on Uijk}

{{(fij)i,j ∈
∏
i,j F(Uij) | fij = fi − fj for some (fi)i ∈

∏
iF(Ui)}

Finally, recall that whenever we have a short exact sequence

0 −→ A′′ −→ A −→ A′ −→ 0

in A, we obtain a long exact sequence in cohomology

0 −→ R0Γ(A′′) −→ R0Γ(A) −→ R0Γ(A′)
δ0−→ R1Γ(A′′) −→ R1Γ(A) −→ · · ·

where δi : RiΓ(A′) −→ Ri+1Γ(A′′) are the connecting morphisms.
The idea of hypercohomology, or more generally of hyperderived functors, is to perform a

similar formalism for cochain complexes A• in A instead of objects. Let us denote by C(A) the
category of cochain complexes in A.

Definition 3.2. A morphism A• −→ B• in C(A) is a quasi-isomorphism if it induces isomor-
phisms on the level of cohomology:

H i(A•)
∼−→ H i(B•)

for every i.

Let A and B be abelian categories and Γ : A −→ B be a left exact functor.

Definition 3.3. If A has enough injectives, and A• ∈ C(A) is a left bounded complex, then
we define

RnΓ(A•) := Hn(Γ(B•))

where A• −→ B• is a quasi-isomorphism with Bi acyclic for every i.

Such quasi-isomorphism always exists if A has enough injectives, and one may check that
this definition does not depend on the chosen quasi-isomorphism.
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Example 3.4. Consider the inclusion functor A −→ C(A) associating an object A of A to the
complex concentrated in degree 0

0 −→ A0 = A −→ 0 −→ 0 −→ · · ·

A quasi-isomorphism A −→ B• (with Bi = 0 for i < 0) is equivalent to a resolution 0 −→
A −→ B•. Thus

RnΓ(A) = RnΓ(A).

Exercise 3.5. For A• ∈ C(A) and m ∈ Z, we can consider the shifted complex A[m]• = A•+m.
Prove that RnΓ(A[m]•) = Rn+mΓ(A•).

Exercise 3.6. Prove that for every short exact sequence of complexes

0 −→ A• −→ B• −→ C• −→ 0

there exists a canonical “long exact sequence of cohomology”

0 −→ R0Γ(A•) −→ R0Γ(B•) −→ R0Γ(C•)
δ0−→ R1Γ(A•) −→ R1Γ(B•) −→ · · ·

Recall that a spectral sequence is a family of complexes (“page r”)

(Ep,qr , dr), dr : Ep,qr −→ Ep+r,q−r+1
r

such that

Ep,qr+1 =
ker(dr : Ep,qr −→ Ep+r,q−r+1)

im(dr : Ep−r,q+r−1 −→ Ep,qr )
.

Here p, q ≥ 0 and r ≥ 1 (or r ≥ 2).
For instance, the first page of a spectral sequence looks as follows:

...
...

...

E0,2
1 E1,2

1 E2,2
1 · · ·

E0,1
1 E1,1

1 E2,1
1 · · ·

E0,0
1 E1,0

1 E2,0
1 · · ·

The second page is obtained by taking cohomology groups of the complexes in the first page,
and so on.

Theorem 3.7. Let A, B and Γ be as before. Suppose that A• is a left bounded complex having
a finite filtration

A• = F 0A• ⊃ F 1A• ⊃ F 2A• ⊃ · · · ⊃ FNA• ⊃ 0

Then there exists a unique spectral sequence (Ep,qr , dr)r≥1 such that:

1. Ep,q1 = Rp+qΓ(F pA•/F p+1A•) and d1 : Ep,q1 −→ Ep+1,q
1 is given by the connecting mor-

phism δp+q of the long exact sequence associated to

0 −→ F p+1A•/F p+2A• −→ F pA•/F p+2A• −→ F pA•/F p+1A• −→ 0
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2. If we denote
F iRnΓ(A•) := im(RnΓ(F iA•) −→ RnΓ(A•))

then
Ep,qr = F pRp+qΓ(A•)/F p+1Rp+qΓ(A•).

for r � 0.
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