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1 Algebraic de Rham cohomology 2

We now define the de Rham cohomology of an arbitraty morphism of schemes.

Definition 1.1. Let π : X −→ S be a morphism of schemes. For every n ∈ N, the nth
(algebraic) de Rham cohomology of X over S is defined by

HndR(X/S) := Rnπ∗(Ω
•
X/S)

Note that HndR(X/S) is a sheaf of OS-modules on S. Let us denote

Hn
dR(X/S) = Γ(S,HndR(X/S))

So that, if S = SpecR is affine, then H1
dR(X/S) =: H1

dR(X/R) is an R-module.

Remark 1.2 (Cohomology with coefficients). To every module with connection (E ,∇) on X,
we can define unique morphisms of abelian sheaves

∇i : E ⊗ Ωi
X/S −→ E ⊗ Ωi+1

X/S

satisfying ∇i(e⊗ω) = e⊗dω+ (−1)i∇(e)∧ω. The connection ∇ = ∇0 is integrable if and only
if (exercise!)

E ⊗ Ω•X/S : 0 −→ E ∇
0

−→ E ⊗ Ω1
X/S

∇1

−→ E ⊗ Ω2
X/S −→ · · ·

is a complex. In this case, we define

HndR(X/S, (E ,∇)) := Rnπ∗(E ⊗ Ω•X/S).

Example 1.3. Suppose that S is separated and that π : X −→ S is affine. Then Ωi
X/S is

acyclic for π∗ for every i (Serre’s theorem), and we get

HndR(X/S) = Hn(π∗Ω
•
X/S).

In particular, when S = SpecR, we have

Hn
dR(X/R) = Hn(Γ(X,Ω•X/R))

and we recover our original definition of the de Rham cohomology for smooth affine schemes
over a field.
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Let us assume that Ω•X/S is bounded and consider the stupid filtration (σ≥pΩ
•
X/S)p≥0 on

Ω•X/S . Here, σ≥pΩ
•
X/S is the subcomplex of Ω•X/S obtained by a truncation at degree p:

σ≥pΩ
•
X/S : 0 −→ 0 −→ · · · −→ 0 −→ Ωp

X/S −→ Ωp+1
X/S −→ · · ·

This is a finite filtration with graded pieces

σ≥pΩ
•
X/S/σ≥p+1Ω

•
X/S = Ωp

X/S [−p]

Thus it gives rise to a spectral sequence, so called Hodge to de Rham spectral sequence1,

Ep,q1 = Rqπ∗Ω
p
X/S ⇒ H

p+q
dR (X/S).

The induced filtration on HndR(X/S) is called the Hodge filtration:

F iHndR(X/S) = im(Rnπ∗(σ≥iΩ
•
X/S) −→ Rnπ∗(Ω

•
X/S)).

Example 1.4 (Curves). Let k be a field and X be a smooth, projective, and geometrically
connected curve over k. The first page of the Hodge to de Rham spectral sequence is:

H1(X,OX) H1(X,Ω1
X/k)

H0(X,OX) H0(X,Ω1
X/k)

H1(d)

H0(d)

where d : OX −→ Ω1
X/k is the differential. Since H0(X,OX) = k, we have H0(d) = 0. Now, we

have a commutative diagram

H1(X,OX) H1(X,Ω1
X/k)

H0(X,Ω1
X/k)

∨ H0(X,OX)∨

H1(d)

∼ ∼

H0(d)∨

where the vertical isomorphisms are given by Serre duality. In particular, H1(d) = 0. This
proves that the Hodge to de Rham spectral sequence degenerates at page 1. It follows that:

1. H0
dR(X/k) ∼= H0(X,OX) = k

2. F 1H1
dR(X/k) ∼= H0(X,Ω1

X/k) and H1
dR(X/k)/F 1H1

dR(X/k) ∼= H1(X,OX).

3. H2
dR(X/k) = F 1H2

dR(X/k) ∼= H1(X,Ω1
X/k)

∼= k

In particular dimH1
dR(X/k) = 2g, where g is the genus of X.

Remark 1.5. One can also obtain the exact sequence

0 −→ H0(X,Ω1
X/k) −→ H1

dR(X/k) −→ H1(X,OX) −→ 0

from the long exact sequence in cohomology associated to the short exact sequence of complexes

0 −→ Ω•X/k[−1] −→ Ω•X/k −→ OX −→ 0.
1It follows from an exercise from last lecture that Rp+qπ∗Ω

p
X/S [−p] = Rqπ∗Ω

p
X/S .
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Exercise 1.6. Prove analogous results in the relative situation, i.e., when X −→ S is a projec-
tive smooth morphisms of relative dimension 1.

Exercise 1.7. Prove that Hodd
dR (Pn

k/k) = 0 and Heven
dR (Pn

k/k) ∼= k.

Remark 1.8. In general, when X is smooth and projective over C, then it follows from Hodge
theory and GAGA that

Hq(X,Ωp
X/C)⇒ Hp+q

dR (X/C)

degenerates at page 1. In particular, if (F i)i denotes the Hodge filtration on Hn
dR(X/C), we get

canonical isomorphisms
F i/F i+1 ∼= Hn−i(X,Ωi

X/C).

It is also possible to compute de Rham cohomology via Čech complexes:

Example 1.9. Suppose that X is a separated scheme of finite type over k and consider an
affine covering X =

⋃
i Ui. If ji1···ip : Ui1···ip −→ X denotes the inclusion, then we have a double

complex

...
...

...

0
∏
i1,i2

ji1i2,∗OUi1i2

∏
i1,i2

ji1i2,∗Ω
1
Ui1i2

/k

∏
i1,i2

ji1i2,∗Ω
2
Ui1i2

/k · · ·

0
∏
i ji,∗OUi

∏
i ji,∗Ω

1
Ui/k

∏
i ji,∗Ω

2
Ui/k

· · ·

0 OX Ω1
X/k Ω2

X/k · · ·

0 0 0

Since the ith vertical complex gives a resolution of Ωi
X/k, we obtain a quasi-isomorphism

Ω•X/k −→ Tot•, were Tot• denotes the total complex of the double Čech complex. Now, us-

ing that Toti is acyclic for every i, we can obtain fairly explicit descriptions of the de Rham
cohomology groups. For instance,

H1
dR(X/k) =

{
((fij)i,j , (ωi)i) ∈

∏
i,j OX(Uij)⊕

∏
i Ω1

X/k(Ui)
∣∣∣ ωi − ωj = dfij over Uij

}
{

(fi − fj)ij , (dfi)i) ∈
∏
i,j OX(Uij)⊕

∏
i Ω1

X/k(Ui)
∣∣∣ for some (fi)i ∈

∏
iOX(Ui)

}
Finally, let us briefly mention that algebraic de Rham cohomology has an obvious func-

toriality. In fact, if ϕ : X −→ Y is a morphism of S-schemes, then the canonical morphism
ϕ∗Ω1

Y/S −→ Ω1
X/S of OX -modules induces a morphism of complexes ϕ∗Ω•Y/S −→ Ω•X/S , which

yields a natural morphism of OS-modules

ϕ∗ : HndR(Y/S) −→ HndR(X/S).

Exercise 1.10. Let X be an elliptic curve over a field k of characteristic 0 and U = X \ {∞}.
Prove that the inclusion j : U −→ X induces an isomorphism j∗ : H1

dR(X/k)
∼−→ H1

dR(U/k).
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2 The Gauss-Manin connection

For simplicity, we fix a field k of characteristic 0, and we work with smooth k-schemes of finite
type X and S.

Let π : X −→ S be a smooth morphism. We will show that, for every n ≥ 0, there exists a
canonical integrable connection

∇ : HndR(X/S) −→ HndR(X/S)⊗ Ω1
S/k.

We follow the approach of Katz-Oda (see [1]).
Let us denote for simplicity Ω∗X/k = Ω∗X , Ω∗S/k = Ω∗S , and H∗dR(X/S) = H∗. Then we can

consider the following finite filtration on Ω•X :

F i = im(π∗Ωi ⊗ Ω•−i −→ Ω•X)

where the above map is given by the wedge product. Note that F i = 0 for i greater then the
relative dimension of X over S.

Lemma 2.1. We have
F i/F i+1 = π∗Ωi

S ⊗ Ω•−iX/S

Proof. Since π is smooth, the sequence 0 −→ π∗Ω1
S −→ Ω1

X −→ Ω1
X/S −→ 0 is exact and locally

split. Thus we have an isomorphism⊕
i

π∗Ωi
S ⊗ Ωp−i

X/S

∼−→
p∧

Ω1
X = Ωp

X

and we get

F i,p =
⊕
j≥i

π∗Ωj
S ⊗ Ωp−j

X/S

The assertion easily follows. �

Let Ep,q1 ⇒ Ep+q be the spectral sequence associated to the finite filtration (F i)i and the
functor π∗.

Lemma 2.2. We have Ep,q1 = HqdR(X/S)⊗ Ωp
S.

Proof. Since Ω1
X is locally free, it follows from last lemma and the “projection formula” that

Ep,q1 = Rp+qπ∗(F
p,•/F p+1,•) = Rp+qπ∗(π

∗Ωp
S ⊗ Ω•−pX ) = Ωp

S ⊗Rqπ∗(Ω
•
X).

�

Here is how the first page of this spectral sequence looks like:

H2 H2 ⊗ Ω1
S H2 ⊗ Ω2

S · · ·

H1 H1 ⊗ Ω1
S H1 ⊗ Ω2

S · · ·

H0 H0 ⊗ Ω1
S H0 ⊗ Ω2

S · · ·

Note that H0 is an OS-algebra, and that the above maps H0 ⊗Ωi
S −→ H0 ⊗Ωi+1

S are given
by id⊗ d, where d : Ωi

S −→ Ωi+1
S is the usual differential.
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Proposition 2.3. The wedge product of differential forms induces a product structure on the
spectral sequence Ep,q1 ⇒ Ep+q, that is, a family of bilinear maps

Ep,qr × Ep
′,q′
r −→ Ep+p

′,q+q′
r , (e, e′) 7−→ e · e′

such that

1. e · e′ = (−1)(p+q)(p
′+q′)e′ · e

2. dr(e · e′) = dr(e) · e′ + (−1)p+qe · dr(e′).

Proof. The proof is formal and we leave it as an exercise. Note that if ω (resp. η) is a section
of F i (resp. F j), then ω ∧ η is a section of F i+j . �

Corollary 2.4. The differential in page 1

d1 : Hn −→ Hn ⊗ Ω1
S

is an integrable connection.

Proof. That d1 is a connection follows from property 2 above and from the fact that OS injects
into H0. It is automatically integrable since we know a priori that Hn ⊗ Ω•S is a complex! �

This is the Gauss-Manin connection: ∇ = d1. Let us now collect some corollaries of the
existence of such connection.

Lemma 2.5. Let A be a Noetherian local ring with maximal ideal m, and suppose that A contains
its residue field k. Suppose that for every a ∈ m \ {0}, there exists a derivation D ∈ Derk(A)
such that vm(Da) < vm(a), where vm(x) := max{i | x ∈ mi}. Then every finitely generated
A-module with a k-connection is free.

Proof. Exercise. Hint: if E is a finitely generatedA-module with a k-connection, take e1, . . . , er ∈
E reducing to a basis of E ⊗A k, and show that they are A-linearly independent. �

Corollary 2.6. Suppose that π is proper. Then the coherent OS-module Hn is a vector bundle
over S.

Proof. It is sufficient to prove that Hn is locally free. Since S is smooth over k, this follows
from the above lemma. Indeed, by flat descent, we can assume k = k. Let (s1, . . . , sm) be local
coordinates at a closed point p ∈ S. Then we can lift the derivations ∂/∂si to the completion
ÔS,p ∼= k[[s1, . . . , sm]], and now the hypotheses of the above lemma are easy to check. �

From now on, we keep the hypothesis that π is proper.

Corollary 2.7. Given a Cartesian square of k-schemes

X ′ X

S′ Sϕ

�

where S′ is also smooth and of finite type over k, there is a canonical isomorphism of OS′-
modules

ϕ∗HndR(X/S)
∼−→ HndR(X ′/S′).

In particular, for every closed point p ∈ S, we have a canonical isomorphism

HndR(X/S)(p) ∼= Hn
dR(Xp/kp).
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Proof. Since π : X −→ S is proper and the de Rham cohomology sheaves are locally free, this
follows from the usual “cohomology and base change” techniques. See [2] Section 8. �

There is also a concept of pullback for connections. If (E ,∇) is a vector bundle with k-
connection on S, and ϕ : S′ −→ S is a morphism of k-schemes, then the pullback connection
ϕ∗∇ on the vector bundle ϕ∗E over S′ is the unique k-connection such that

(ϕ∗∇)(ϕ∗e) = ϕ∗(∇e) (2.1)

for every local section e of E .
We next state a naturality statement for the Gauss-Manin connection, the proof of which

we leave as an exercise: it easily follows from last corollary and from the explicit construction
of the Gauss-Manin connection as a differential in a spectral sequence.

Proposition 2.8. Given a Cartesian square of k-schemes

X ′ X

S′ Sϕ

�

where S′ is also smooth and of finite type over k, if ∇ : HndR(X/S) −→ HndR(X/S) ⊗ Ω1
S/k

denotes the Gauss-Manin connection, then ϕ∗∇ is the Gauss-Manin connection on HndR(X ′/S′)
after the identification HndR(X ′/S′) ∼= ϕ∗HndR(X/S) of last corollary.

There is also a similar result concerning a base change on the base field. Let k′ be a field
containing k, and consider a diagram of schemes

X ′ X

S′ S

Spec k′ Spec k

�

�

where both squares are Cartesian. If (E ,∇) is a vector bundle with a k-connection on S, then
there exists a unique k′-connection ∇′ on the vector bundle E ′ = E ⊗k k′ over S′ satisfying the
same property of (2.1). In particular, if E = HndR(X/S) and ∇ is the Gauss-Manin connection,
then we get a k′-connection

∇′ : HndR(X ′/S′) −→ HndR(X ′/S′)⊗ Ω1
S′/k′

It is not difficult to show, again from the explicit constructions, that ∇′ is in fact the Gauss-
Manin connection on HndR(X ′/S′).

Finally, let us state a comparison theorem which follows immediately from GAGA and from
the “holomorphic Poincaré lemma”.

Theorem 2.9. Let k = C. Then there exists a canonical isomorphism of vector bundles with
connection on San

(HndR(X/S)an,∇an) ∼= (Rnπan∗ CXan ⊗C OSan , id⊗ d).

In particular, if α is a section of HndR(X/S)an, and σ is a section of Rnπ
an
∗ ZXan, we have

d

(∫
σ
α

)
=

∫
σ
∇α.

The above equation can be used to compute the Gauss-Manin connection explicitly.
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