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1 Algebraic de Rham cohomology 2

We now define the de Rham cohomology of an arbitraty morphism of schemes.

Definition 1.1. Let 7 : X — S be a morphism of schemes. For every n € N, the nth
(algebraic) de Rham cohomology of X over S is defined by

Har(X/S) = Rnﬂ*(ﬂ.;(/s)
Note that H}y (X/S) is a sheaf of Og-modules on S. Let us denote
Hir(X/S) =T (S, Hir (X/S))
So that, if S = Spec R is affine, then H}(X/S) =: Hiz(X/R) is an R-module.

Remark 1.2 (Cohomology with coefficients). To every module with connection (£,V) on X,
we can define unique morphisms of abelian sheaves

ViE@ Ny g — ERQY

satisfying Vi(e®@w) = e®@dw + (—1)'V(e) Aw. The connection V = V? is integrable if and only
if (exercisel!)

. Vo 1 V! 2
€®QX/S: 0—>5—>5®QX/S—>5®QX/S—>~--
is a complex. In this case, we define
HAr(X/S, (€, V)) == R (€ @ 0 /g)-
Example 1.3. Suppose that S is separated and that 7 : X — S is affine. Then Qé{/s is
acyclic for 7, for every i (Serre’s theorem), and we get
Har(X/S) = H"(m2%/g)-
In particular, when S = Spec R, we have
Hi(X/R) = H™(D(X, Q%))

and we recover our original definition of the de Rham cohomology for smooth affine schemes
over a field.



Let us assume that Q% ¢ is bounded and consider the stupid filtration (0>pQ% g)p=>0 on
0% /s Here, 0>,9% /s is the subcomplex of Q% /s obtained by a truncation at degree p:

p+1

—>QX/S

o>p0% /s 0—0— - —0—0f —

X/S

This is a finite filtration with graded pieces

UZPQB(/S/UZp—&-lQ;(/s = Q};(/S[_p]

Thus it gives rise to a spectral sequence, so called Hodge to de Rham spectral sequence’,

EP? = Rim O o = HER"(X/S).
The induced filtration on Hj (X/S) is called the Hodge filtration:
F'HiR(X/S) = im(R"7,(02i0% /g) — R"m(Q%/5))-

Example 1.4 (Curves). Let k be a field and X be a smooth, projective, and geometrically
connected curve over k. The first page of the Hodge to de Rham spectral sequence is:

()

Hl
HY(X,0x) % H'(X, 9L ,)

HO(d)
HO(X,0x) % HO(X, QL )

where d: Ox — Q%{/k is the differential. Since H°(X, Ox) = k, we have H%(d) = 0. Now, we

have a commutative diagram

Hl(X, OX) ﬂ

HOX, 0% ,)" oy HO(X, Ox)"

Hl (X7 Q%{/k)

—_—
HO(d)\/

where the vertical isomorphisms are given by Serre duality. In particular, H'(d) = 0. This
proves that the Hodge to de Rham spectral sequence degenerates at page 1. It follows that:

1. HOz(X/k) =2 HY(X,0x) =k

2. FlHéR(X/k:) ~ HO(X, Q}(/k) and HéR(X/k)/FlHéR(X/k) ~ HY(X,0x).

8. Hay(X/k) = F'H3 (X/k) = H(X,Q4 ) = k
In particular dim H}g (X/k) = 2g, where g is the genus of X.

Remark 1.5. One can also obtain the exact sequence
0 — H(X,QY),) — Hig(X/k) — H'(X,0x) — 0
from the long exact sequence in cohomology associated to the short exact sequence of complexes

0— Q% -1 — Q%) — Ox — 0.

Tt follows from an exercise from last lecture that Rp+q7r*Q‘;(/S[—p] = R7my Q?(/S‘
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Exercise 1.6. Prove analogous results in the relative situation, i.e., when X — S'is a projec-
tive smooth morphisms of relative dimension 1.

Exercise 1.7. Prove that H{34(P}/k) = 0 and HSS™ (PR /k) = k.

Remark 1.8. In general, when X is smooth and projective over C, then it follows from Hodge
theory and GAGA that

H(X, 0% o) = Hig(X/C)

degenerates at page 1. In particular, if (F"); denotes the Hodge filtration on Hs (X/C), we get
canonical isomorphisms o ‘ ‘
FF 2 H(X o).

It is also possible to compute de Rham cohomology via Cech complexes:

Example 1.9. Suppose that X is a separated scheme of finite type over k£ and consider an
affine covering X = J, U;. If Jir-ip * Uiyi, —> X denotes the inclusion, then we have a double
complex

R o R o 1 5 o 2 .
0 Hz’l,ig 31112,*0Ui1i2 Hil,ig ]1112,*QU1.12~2/]¢ Hil,ig ]11127*QUi1¢2/k

0 —— [, ji+Ou, Hij@*ﬂ}]i/k Hiji,*Q?]i/k - ...
0 Ox Q) 0%, ——
0 0 0

Since the ith vertical complex gives a resolution of Q’X e We obtain a quasi-isomorphism
0% s Tot®, were Tot® denotes the total complex of the double Cech complex. Now, us-

ing that Tot’ is acyclic for every 4, we can obtain fairly explicit descriptions of the de Rham
cohomology groups. For instance,

{((fij)@j, (wz)z) S Hi,j OX(Uij> SY HZ Q%{/k(Uz) ‘ Wi —wj; = dfij over Uij}

HiR(X/k) = :
{(Fi= 1) @) € TT,,; Ox (Uig) & TT, 2 (U3) | for some (£, € [T, Ox(U1)}

Finally, let us briefly mention that algebraic de Rham cohomology has an obvious func-
toriality. In fact, if ¢ : X — Y is a morphism of S-schemes, then the canonical morphism
@*Q%,/S — Q%(/S of Ox-modules induces a morphism of complexes go*Q;//S — QB(/S, which
yields a natural morphism of Og-modules

¢* : Hir (Y/S) — Hir(X/S).

Exercise 1.10. Let X be an elliptic curve over a field k of characteristic 0 and U = X \ {o0}.
Prove that the inclusion j : U — X induces an isomorphism j* : Hi (X/k) — Hz (U/k).



2 The Gauss-Manin connection

For simplicity, we fix a field k& of characteristic 0, and we work with smooth k-schemes of finite
type X and S.

Let m: X — S be a smooth morphism. We will show that, for every n > 0, there exists a
canonical integrable connection

V: Hir(X/S) — HiR(X/S) @ Q.

We follow the approach of Katz-Oda (see [1]).

Let us denote for simplicity Q% , = %, QF, = QF, and Hig(X/S) = H*. Then we can
consider the following finite filtration on 5%

F'=im(m*Q' @ Q*" — Q%)
where the above map is given by the wedge product. Note that F* = 0 for i greater then the
relative dimension of X over S.
Lemma 2.1. We have o ' '
Fi/F* = 70 @ 0%

Proof. Since 7 is smooth, the sequence 0 — W*Qé — Qﬁ( — Qﬁ( /s 0 is exact and locally
split. Thus we have an isomorphism

p
@n* e = Ak =0%

and we get ' '
F'P = P n 0 o O
Jj=i
The assertion easily follows. |

Let EP? = EP*4 be the spectral sequence associated to the finite filtration (F?); and the
functor m,.

Lemma 2.2. We have E? = H2o (X/S) @ QF.
Proof. Since QY is locally free, it follows from last lemma and the “projection formula” that

BP9 = RPT (FP*/FPTLe) = RPYOr, (m*QF @ Q% P) = QL @ Rim (Q%).

Here is how the first page of this spectral sequence looks like:

H2 —— H22Q, —— HP2 0% —— -
H —— H U — H @ —

H— W — W —

Note that H° is an Og-algebra, and that the above maps H'® Qg — H'® Qfgﬂ are given
by id @ d, where d : QY — Qgﬂ is the usual differential.
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Proposition 2.3. The wedge product of differential forms induces a product structure on the
spectral sequence EY* = EPT4 that is, a family of bilinear maps

EP x BP9y ppiviatd (e,¢) —s e ¢
such that
1. e-e = (_1)(p+(1)(p’+rf)e/ e
2. dy(e-€)=d.(e) €+ (—=1)PTe-d.().

Proof. The proof is formal and we leave it as an exercise. Note that if w (resp. n) is a section
of F' (resp. F7), then w A7 is a section of F't/, [ |

Corollary 2.4. The differential in page 1
dy - H" — H" @ Q%
s an integrable connection.

Proof. That d; is a connection follows from property 2 above and from the fact that Og injects
into H°. It is automatically integrable since we know a priori that H" ® % is a complex! W

This is the Gauss-Manin connection: V = dy. Let us now collect some corollaries of the
existence of such connection.

Lemma 2.5. Let A be a Noetherian local ring with mazimal ideal m, and suppose that A contains
its residue field k. Suppose that for every a € m\ {0}, there exists a derivation D € Dery(A)
such that vn(Da) < vn(a), where vy(z) == max{i | x € m'}. Then every finitely generated
A-module with a k-connection is free.

Proof. Exercise. Hint: if F is a finitely generated A-module with a k-connection, take ey, ..., e, €
FE reducing to a basis of F ®4 k, and show that they are A-linearly independent. |

Corollary 2.6. Suppose that 7 is proper. Then the coherent Og-module H™ is a vector bundle
over S.

Proof. 1t is sufficient to prove that H" is locally free. Since S is smooth over k, this follows
from the above lemma. Indeed, by flat descent, we can assume k = k. Let (s1,. .., s,,) be local
coordinates at a closed point p € S. Then we can lift the derivations 9/9s; to the completion
@S,p = k[s1,...,Sm], and now the hypotheses of the above lemma are easy to check. |

From now on, we keep the hypothesis that 7 is proper.

Corollary 2.7. Given a Cartesian square of k-schemes

X — X

l o |

S/TS’

where S’ is also smooth and of finite type over k, there is a canonical isomorphism of Qg -
modules
¢ Har (X/S) — Har(X'/S").

In particular, for every closed point p € S, we have a canonical isomorphism

HQR(X/S)(p) = HgR(Xp/kp)-



Proof. Since m: X — S is proper and the de Rham cohomology sheaves are locally free, this
follows from the usual “cohomology and base change” techniques. See [2] Section 8. n

There is also a concept of pullback for connections. If (£,V) is a vector bundle with k-
connection on S, and ¢ : S’ — S is a morphism of k-schemes, then the pullback connection
©*V on the vector bundle ©*& over S’ is the unique k-connection such that

(" V)(¢"e) = ¢*(Ve) (2.1)
for every local section e of £.
We next state a naturality statement for the Gauss-Manin connection, the proof of which
we leave as an exercise: it easily follows from last corollary and from the explicit construction
of the Gauss-Manin connection as a differential in a spectral sequence.

Proposition 2.8. Given a Cartesian square of k-schemes

X — X

l o |
S'—5— 5
where S" is also smooth and of finite type over k, if V : Hip(X/S) — Hig(X/S) ® Qé/k
denotes the Gauss-Manin connection, then ¢*V is the Gauss-Manin connection on Hjp (X'/S")
after the identification Hp (X'/S") = ¢*HIz (X/S) of last corollary.
There is also a similar result concerning a base change on the base field. Let &’ be a field

containing k, and consider a diagram of schemes

X — X

|l o |

S —

| o |

Spec k’ —— Speck
where both squares are Cartesian. If (£,V) is a vector bundle with a k-connection on S, then
there exists a unique k’-connection V' on the vector bundle & = £ @ k' over S’ satisfying the
same property of (2.1). In particular, if £ = H}jz (X/S) and V is the Gauss-Manin connection,
then we get a k’-connection
V' Hig (X'/S") — Hir(X'/S") @ Qg

It is not difficult to show, again from the explicit constructions, that V’ is in fact the Gauss-
Manin connection on My (X'/S").

Finally, let us state a comparison theorem which follows immediately from GAGA and from
the “holomorphic Poincaré lemma”.

Theorem 2.9. Let k = C. Then there exists a canonical isomorphism of vector bundles with
connection on S*"

(Har(X/8)™, V) = (R"72Cxan ®c Ogan,id ® d).

In particular, if o is a section of Hig(X/S)*™, and o is a section of R, 7" Zxan, we have

d(La)—LVa.

The above equation can be used to compute the Gauss-Manin connection explicitly.
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