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Exercise 0.1. Let A be an R-algebra, and M be an A-module. Let D ∈ DerR(A,M), n ∈ N,
and f1, . . . , fn ∈ A. Prove that for every n ∈ N

D(f1 · · · fn) =
n∑
i=1

∏
j 6=i

fj

D(fj).

In particular, for every f ∈ A,
D(fn) = nfn−1D(f).

If f is invertible in A, then the above formula also works for negative n.

Exercise 0.2. Let A be an R-algebra.

1. Prove that the composition of derivations in DerR(A) is not in general a derivation (i.e.,
give some simple counterexamples).

2. For D ∈ DerR(A), we set

Dn = D ◦D ◦ · · · ◦D︸ ︷︷ ︸
n times

∈ EndR(A)

Prove that for every f, g ∈ A, we have

Dn(fg) =

n∑
j=0

(
n

j

)
Dj(f)Dn−j(g).

Conclude that, if R is of characteristic p, then Dp ∈ DerR(A) for every D ∈ DerR(A).
Can you compute (D1 +D2)

p in terms of D1 and D2? What about (fD)p?

3. Let D1, D2 ∈ DerR(A). The Lie bracket [D1, D2] ∈ EndR(A) is defined by the usual
commutator:

[D1, D2] = D1 ◦D2 −D2 ◦D1.

Prove that [D1, D2] ∈ DerR(A).

4. Polynomial expressions in arbritraty compositions of derivations are known as “differential
operators”. Let D = d

dx ∈ DerR(R[x]). Prove, for every n ∈ N, the following identity of
differential operators:

xn+1Dn+1 = xD ◦ (xD − 1) ◦ (xD − n) .

Exercise 0.3. Let L be a finite field extension of K. Prove that L/K is separable if and only
if Ω1

L/K = 0.
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Exercise 0.4. Let p : V(E) −→ S be the total space of a vector bundle E over a scheme S.
Prove that

Ω1
E/S
∼= p∗E

canonically. Hint: prove first that for any R-modules M and N , we can identify HomR(M,N) =
DerR(SymM,N) and conclude that SymM ⊗R M −→ Ω1

SymM/R, f ⊗ m 7−→ fdm, is an
isomorphism of SymM -modules.

Exercise 0.5. Let k be a field, f ∈ k[x, y], and X = Spec k[x, y]/(f) be the affine plane curve
defined by f . Assume that f , ∂f/∂x, and ∂f/∂y are coprime, and consider the open subset
U = D(∂f/∂y) of X. Prove that the differential form (∂f/∂y)−1dx ∈ Γ(U,Ω1

X/k) extends to a

global section ω of Ω1
X/k and that Ω1

X/k = OXω.

Exercise 0.6. 1. Consider a Cartesian square of schemes

X ′ X

S′ S

ϕ

�

Prove that we have a canonical isomorphism

Ω1
X′/S′ ∼= ϕ∗Ω1

X/S .

2. Let X1 and X2 be S-schemes, prove that

Ω1
X1×SX2/S

= Ω1
X1×SX2/X2

⊕ Ω1
X1×SX2/X1

.

In particular, if pi : X1 ×S X2 −→ Xi denotes the ith projection, i = 1, 2, then conclude
from 1 that we have a canonical isomorphism

Ω1
X1×SX2/S

∼= p∗1Ω
1
X1/S

⊕ p∗2Ω1
X2/S

.

Exercise 0.7. Let R be a ring. Describre all the vector fields on A1
R that lift to a vector field

on P1
R.

Exercise 0.8. Let R be a ring. Prove that there is a canonical exact sequence

0 −→ OPn
R
−→ OPn

R
(1) −→ TPn

R/R
−→ 0.

Hint: see Hartshorne II.8.13 (can you find a different proof?).

Exercise 0.9. Let π : X −→ S be a morphism of schemes, and define the Picard functor
PicX/S by

PicX/S(T ) = Pic(X ×S T )/Pic(T ) (T ∈ Sch/S)

We say that π∗OX = OS holds universally if (πT )∗OX×ST = OT for every S-scheme T . For
instance, this holds if π is proper, flat, surjective and with geometrically integral fibers. Now,
let S = Spec k where k is a field, assume that π∗OX = OS holds universally, and that PicX/k is
representable by a smooth k-scheme. Let e ∈ PicX/k(k) = Pic(X) be given by the trivial line
bundle OX on X. Prove that there’s a natural isomorphism of k-vector spaces

TPicX/k /k(e) = H1(X,OX).

In particular, the tangent space at the origin of an elliptic curve E is naturally isomorphic to
H1(E,OE). In general, if A is an abelian variety over k, and A∨ denotes the dual abelian
variety, then the tangent space at the origin of A∨ is naturally isomorphic to H1(A,OA).
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Exercise 0.10. Let R be a ring and f ∈ R[x1, . . . , xn]. Prove that the the R-scheme X =
SpecR[x1, . . . , xn]/(f) is smooth if and only if(

f,
∂f

∂x1
, . . . ,

∂f

∂xn

)
= (1)

as ideals in R[x1, . . . , xn].

Exercise 0.11. Let πn : A1
C −→ A1

C be defined by π∗n(t) = tn. Prove that πn is unramified if
and only if n = 1.

Exercise 0.12. Let k be a field and X = Spec k[x, y, z]/(xz − y).

1. Prove that X is a smooth algebraic variety over k.

2. Let π : X −→ A2
k be the morphism of k-schemes induced by the inclusion k[x, y] −→

k[x, y, z]/(xz − y). Prove that every geometric fiber of π is smooth.

3. Prove that π is not smooth.

4. Here, X is an affine open subset of the blow-up of A2
k at the origin. Generalize the above

facts to more general blow-ups.

Exercise 0.13. Let R be a ring. Recall that a standard étale algebra over R is an R-algebra
of the form A = R[x]g/(f), where f, g ∈ R[x], f is monic and the image of df/dx in A is
a unit. Prove directly from the definition that if A is a standard étale algebra over R, then
SpecA −→ SpecR is étale.

Exercise 0.14. Let π : X −→ S be étale at p ∈ X. Prove that ÔX,p is a finite ÔS,π(p) algebra

isomorphic to a finite direct sum
⊕n

i=1 ÔS,π(p) as an ÔS,π(p)-module. Hint: this is a bit like
Hensel’s lemma.

Exercise 0.15. Let π : X −→ S be a morphism of schemes, and consider a diagram

X

T T1 S

π

i

ϕ

where i : T −→ T1 is a thickening.

1. Prove that
U 7−→ Γ(U,F) := {ψ ∈ HomS(i(U), X) | ψ ◦ i|U = ϕ|U}

is a sheaf of sets on T .

2. Show that the sheaf of OT -modules

H := HomOT
(ϕ∗Ω1

X/S , CT/T1)

acts on F , and that whenever Γ(U,F) 6= ∅, the action

Γ(U,H)× Γ(U,F) −→ Γ(U,F)

is simply transitive. Hint: consider first the case where everything is affine to understand
what’s happening.
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3. Show that if π is locally smooth, then F is a H-torsor.

4. Conclude that every locally smooth morphism is smooth. Hint: use that H1 of a quasi-
coherent sheaf on an affine scheme vanishes.

Exercise 0.16. Prove that a morphism of schemes π : X −→ S is unramified at p ∈ X if and
only if mπ(p)OX,p = mp and k(p) is a separable extension of k(π(p)).

Exercise 0.17. Prove that a morphism of schemes if étale if and only if it is flat and unramified.

Exercise 0.18. Let ϕ : X −→ Y be a morphism of smooth algebraic varieties over a field k.
Prove that if ϕ is finite, unramified, and universally injective, then it is a closed immersion.

Exercise 0.19. Let k be a field, and X be a smooth, projective and geometrically connected
curve over k. Assume that X is of genus g = 1, and that X has a rational point p ∈ X(k). Let
us prove that X is isomorphic to a projective plane curve given by a ‘generalized Weierstrass
equation’:

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

1. Prove that Ω1
X/k is trivial.

2. Prove that dimkH
0(X,OX(D)) = degD

3. Fix a local coordinate t at p and let ω be the unique global section of Ω1
X/k such that ω =

(1 +O(t))dt in a ‘formal neighborhood’ of p. Prove that there exists x ∈ H0(X,OX(2[p])
and y ∈ H0(X,OX(3[p])) such that (1, x, y) is a basis of H0(X,OX(3[p])). Conclude that
x and y (seen as rational functions on X) necessarily satisfy an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some ai ∈ k.

4. Show that OX(3[p]) is very ample and conclude. Hint: apply Exercise 0.18 (cf. Liu Prop.
7.4.5).

Exercise 0.20. Let k be a field and consider a hypterelliptic curve X over k defined by y2 =
f(x), where f ∈ k[x] is of degree d. Recall that the coordinates at infinity are given by
(t, s) = (1/x, y/xe), where d = 2e or d = 2e− 1 (depending on the parity of d). Prove that

dx

y
, x
dx

y
, . . .xe−2

dx

y

gives a basis of H0(X,Ω1
X/k), so that X is of genus e− 1.

Exercise 0.21. Let k be an algebraically closed field, and X be a smooth, projective and
connected curve over k. Let p ∈ X be a closed point and fix a local coordinate x at p, so that
ÔX,p = k[[x]]. For a meromorphic differential ω on X, we can write

ω =

( ∑
n�−∞

anx
n

)
dx

in a ‘formal neighborood’ of p. We define its residue at p by

resp(ω) = a−1 ∈ k.

A classical theorem asserts that for any meromorphic differential, we have
∑

p∈X resp(ω) = 0.

4



1. Prove that resp(ω) does not depend on the choice of x.

2. Let D =
∑r

i=1 ni[pi] be a divisor on X. Prove that connections ∇ on OX(D) correspond
to meromorphic differentials ω ∈ H0(X,OX([p1] + · · · [pr])) such that respi(ω) = ni.

3. Prove that a line bundle L on X admits a connection if and only if degL = 0.

Exercise 0.22. Prove that the complex unit disk is not algebraic, i.e., there’s no C-scheme
locally of finite type X such that Xan is isomorphic to {z ∈ C | |z| < 1}.
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