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1 Modular forms

We denote the upper half-plane by H = {τ ∈ C | Im(τ) > 0}. The group SL2(R) acts on H by
fractional linear transformations:

γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
.

Note that the formula

Im(γτ) =
Im(τ)

|cτ + d|2

guarantees that we indeed have γτ ∈ H.

Definition 1.1. Let k be an integer. A modular form of weight k is a holomorphic function
f : H −→ C satisfying

f(γτ) = (cτ + d)kf(τ), for all γ =

(
a b
c d

)
∈ SL2(Z),

and which bounded as Im(τ)→ +∞.

There are no non-zero modular forms of odd weight (consider −I2 ∈ SL2(Z)). It is a theorem
that there are no non-zero modular forms of weight k ≤ 2 ([3] Chapter 7, Theorem 4). For
every other k, we always have non-trivial examples of modular forms.
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Example 1 (Eisenstein series). For all even k ≥ 4, the Eisenstein series

Gk(τ) :=
∑

(m,n)∈Z2\{(0,0)}

1

(m+ nτ)k

is a modular form of weight k. Moreover,

lim
Imτ→+∞

Gk(τ) =
∑

m∈Z\{0}

1

mk
= 2ζ(k)

where ζ is Riemann’s zeta function.

By taking combinations of Eisenstein series, we can form other modular forms.

Example 2 (Ramanujan’s delta function). The function

∆(τ) =
1

1728

((
G4(τ)

2ζ(4)

)3

−
(
G6(τ)

2ζ(6)

)2
)

is a modular form of weight 12.

As every modular form f is invariant under τ 7−→ τ + 1 and is bounded as Im(τ)→ +∞, it
can be written as

f(τ) = a0 + a1q + a2q
2 + a3q

3 + · · · , q = e2πiτ ,

for unique an ∈ C. For example, one can show that Fourier expansion of an Eisenstein series is
given by

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)qn

where σk−1(n) =
∑

d|n d
k−1 ([3] Chapter 7, Proposition 8).

Definition 1.2. A cuspform is a modular form f for which a0 = 0.

For instance, Ramanujan’s delta is a cuspform:

∆(τ) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − · · · ∈ Z[[q]].

As a motivation, let us further explore this example. The Fourier coefficients an of ∆ can be
shown to satisfy the following properties:

• amn = aman for every integers m,n ≥ 1 satisfying gcd(m,n) = 1;

• apr+1 = apapr − p11apr+1 for every prime p and every integer r ≥ 0.

Equivalently, these identities mean that the Dirichlet series

L(∆, s) :=
∑
n=1

an
ns

admits the following Euler product

L(∆, s) =
∏
p

1

1− app−s + p11−2s
.

The series L(∆, s) admits an analytic continuation to an entire function of s ∈ C and satisfies
the following aditional properties:
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1. For every integer 0 ≤ m ≤ 12, we have

L(∆,m) =
(2π)m

(m− 1)!

∫ ∞
0

∆(it)tm−1dt.

The above integrals are examples of periods of modular forms, and can be shown to be
expressible as an integral of a rational function with rational coefficients, i.e., a Kontsevich-
Zagier period.

2. The above Euler product “comes from a family of `-adic representations”

ρ∆,` : Gal(Q/Q) −→ GL2(Q`).

This means that for each prime p 6= `, the characteristic polynomial of ρ(Frobp) is 1 −
apX + p11X2.

Both the above properties are related to algebraic geometry, and indeed have a common cause:
the existence of a ‘motive’ M∆ attached to ∆, whose ‘realisations’ are suitable pieces of certain
cohomology groups H1(M1,1, Sym10H). The purpose of these lectures is to give an introduction
to these objects.

2 Complex tori

Definition 2.1. A subgroup Λ of (C,+) is a lattice if it is discrete and if the quotient C/Λ is
compact.

It is an exercise to prove that any lattice in C is of the form

Λ = Zω1 + Zω2,

for some ω1, ω2 ∈ C linearly independent over R.
Given a lattice Λ ⊂ C, the quotient C/Λ is a compact Riemann surface, the complex charts

being given by local sections of the quotient map C −→ C/Λ, with a complex Lie group structure
induced by the addition on C:

(z + Λ) + (w + Λ) = (z + w) + Λ.

These are the properties characterising complex tori.

Definition 2.2. A complex torus is a compact Riemann surface with the structure of a complex
Lie group. A morphism of complex tori is a morphism of complex Lie groups.

We have seen that any lattice Λ ⊂ C gives rise to a complex torus C/Λ. In fact, every
complex torus is of the form.

Theorem 2.3. If X is a complex torus, then there exists a lattice Λ ⊂ C such that X is
isomorphic to C/Λ.

We only explain the main ideas of the proof; details can be found in [1, I.1]. As for any
complex Lie group, we can consider the vector space LieX, defined as the tangent space TeX
at the identity e ∈ X, and the exponential map

exp : LieX −→ X,
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a local biholomorphism at 0, sending 0 to e. Compactness of X allows to prove that the group
law is commutative, so that exp is also a morphism of complex Lie groups. Further, exp must
be surjective as its image contains a neighborhood of e = exp(0), and its kernel discrete as it’s
injective in a neighborhood of 0. This proves the theorem, since LieX ∼= C and ker(exp) is a
lattice in LieX.

We can be more precise. By using the identification

LieX ∼= H0(X,Ω1)∨

induced by the natural duality between tangent and cotangent vectors, we can prove that
ker(exp) is the image of the map H1(X,Z) −→ LieX sending γ to (ω 7−→

∫
γ ω). Thereby, we

obtain an exact sequence

0 H1(X,Z) LieX X 0,
exp

(1)

which is just a fancy version of

0 Λ C C/Λ 0.

Remark 1. Concretely, if X = C/Λ, then H0(X,Ω1) = C[dz] and the identification of the
lattice Λ with H1(X,Z) is obtained by associating, to every λ ∈ Λ, the homology class of the
loop [0, 1] −→ X sending t to tλ+ Λ.

The exact sequence (1) is functorial, meaning that any morphism of complex tori ϕ : X ′ −→
X yields a commutative diagram

0 H1(X ′,Z) LieX ′ X ′ 0

0 H1(X,Z) LieX X 0

ϕ∗ Lieϕ ϕ

where Lieϕ = dϕe, the differential of ϕ at e ∈ X ′, and ϕ∗ is the pushforward in homology. As
Lieϕ is linear, we immediately obtain the following characterisation.

Lemma 2.4. If Λ and Λ′ are lattices in C, then

{α ∈ C | αΛ′ ⊂ Λ} −→ Hom(C/Λ′,C/Λ), α 7−→ [α] : z + Λ′ 7−→ αz + Λ

is a bijection. �

It follows that two lattices Λ and Λ′ give rise to isomorphic complex tori if and only if they
are homothetic: there exists α ∈ C such that αΛ′ = Λ.

Example 3. For any τ ∈ H = {τ ∈ C | Im(τ) > 0}, we set

Xτ = C/(Z + Zτ).

Every complex torus is isomorphic to some Xτ . Indeed, given a lattice Λ = Zω1 + Zω2, up to
swapping ω1 and ω2, we can assume that τ = ω2/ω1 has positive imaginary part. It follows
from

Zω1 + Zω2 = ω1(Z + Zτ)

that C/Λ is isomorphic to Xτ .
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Example 4. Given τ, τ ′ ∈ H, when are Xτ and Xτ ′ isomorphic? A morphism ϕ : Xτ ′ −→ Xτ
corresponds to α ∈ C satisfying

α

(
τ ′

1

)
=

(
a b
c d

)
︸ ︷︷ ︸

γ

(
τ
1

)

for some a, b, c, d ∈ Z. By dividing the first row by the second row, we get

τ ′ =
aτ + b

cτ + d
.

Since

Im(τ ′) = (ad− bc) Im(τ)

|cτ + d|2
,

we obtain det(γ) = ad− bc > 0. If ϕ is an isomorphism, then γ ∈ GL2(Z), but the positivity of
the determinant actually implies that γ ∈ SL2(Z).

Conversely, if τ ′ = γτ with γ ∈ SL2(Z), then the multiplication by cτ + d gives an isomor-
phism Xτ ′ ∼= Xτ . We conclude that Xτ is isomorphic to Xτ ′ if and only if τ and τ ′ are equivalent
under the left action (γ, τ) 7−→ γτ of SL2(Z) on H.

3 The moduli stack of complex tori

Is there a space classifying complex tori? The answer depends on what we understand by ‘space’
and by ‘classifying’. It follows from the above examples that the left quotient SL2(Z)\H is in
bijection with isomorphy classes of complex tori.

Despite the action of SL2(Z) on H not being free, the quotient can be given a natural
complex structure and can be shown to be isomorphic to C. We say that C is a coarse moduli
space of complex tori. This is good enough for some applications, but not for modular forms.

In order to get finer notions of moduli, we need to work with families.

Definition 3.1. Let S be a complex manifold. A family of complex tori over S is a proper
holomorphic map p : X −→ S with the structure of a relative complex Lie group over S such
that each fibre of p is a complex torus.

The definition of a relative complex Lie group is analogous to that of a group scheme: there
is a holomorphic section e : S −→ X of p (identity), and holomorphic maps µ : X ×S X −→ X
and ι : X −→ X over S (multiplication and inverse) satisfying the usual group axioms.

Example 5. Consider the following action of Z2 on C×H:

(m,n) · (z, τ) = (z +m+ nτ, τ).

One can show that this action is proper and free, so that the quotient is a 2-dimensional complex
manifold X. The projection C×H −→ H induces a holomorphic map p : X −→ H, which admits
the section e : H −→ X sending τ to [(0, τ)]. One can check that the holomorphic maps

µ : X×H X −→ X, ([(z1, τ)], [(z2, τ)]) 7−→ [(z1 + z2, τ)]

and
ι : X −→ X, [(z, τ)] 7−→ [(−z, τ)]

are well-defined and give p : X −→ H the structure of a relative complex Lie group over H. In
fact, p is a family of complex tori over H: for any τ ∈ H we have p−1(τ) = Xτ (see Example 3).
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Definition 3.2 (Moduli stack of complex tori). We define a category Man as follows. Its
objects are given by families of complex tori p : X −→ S over arbitrary complex manifolds S,
and its morphisms are given by Cartesian squares (i.e., pullback diagrams)

X ′ X

S′ S

�

The categoryMan comes with a natural forgetful functor to the category of complex manifolds

Man −→ (C-manifolds), (p : X −→ S) 7−→ S

giving it the structure of a category over the category of complex manifolds.

The fibre over a complex manifold S is the full subcategory Man(S) of objects of Man

mapping to S.

Remark 2. In fact, Man is category fibred in groupoids over the category of complex mani-
folds, meaning that we can make sense of pullbacks and that each fibre category is a groupoid
(a category in which every morphism is an isomorphism). Further, we can put a Grothendieck
topology on the category of complex manifolds in such a way that Man satisfies a ‘sheaf con-
dition’; this means that Man is a stack. This justifies the name ‘moduli stack’. We refer to [2,
Chapters III and IV] for the general definitions.

A ‘fine moduli space’ S of complex tori, if it existed, should be the base of a terminal object
of Man, i.e., a family of complex tori X −→ S that is universal, in the sense that every other
family X ′ −→ S′ is a pullback of X −→ S via a unique map S′ −→ S. Such terminal object
cannot exist, because unicity will always be violated. Indeed, every family of complex tori
X −→ S admits a non-trivial automorphism in Man, namely, multiplication by −1:

X X

S S

[−1]

id

�

We can remedy this in two ways: by introducing ‘level structures’ (see next lecture), or by
treating Man as a space in its own right.

To explain the second approach, we introduce two constructions.

Example 6 (Complex manifolds as stacks). To every complex manifold S we can associate a
category S over (C-manifolds) as follows. The objects of S are complex manifolds over S, that
is, holomorphic maps T −→ S. Morphisms are given by commutative diagrams

T ′ T

S

The ‘2-Yoneda lemma’ guarantees that S is determined by S. Thus, by abuse, we can drop the
underline in the notation and always see a complex manifold S as a category over (C-manifolds)
defined as above.

6



By a morphism between two categories over (C-manifolds) we mean a functor commuting
with the projections to (C-manifolds). The next lemma formalises the idea thatMan plays the
role of a fine moduli space of complex tori.

Lemma 3.3. Let S be a complex manifold. Then, morphisms S −→Man correspond to families
of complex tori X −→ S.

Proof. To a family of complex tori X −→ S, we associate the functor which sends a complex
manifold T over S to the pullback family of complex tori X ×S T −→ T . Conversely, to a
functor S −→Man over (C-manifolds), we associate the family X −→ S given by the image of
id : S −→ S. These constructions are inverse of each other.

Example 7 (Stacky quotient or orbifold quotient). Let G be a discrete group with a proper
left action on a complex manifold Y . We define a category [G\Y ] over (C-manifolds) as follows.
Objects are principal G-bundles P −→ S with a G-equivariant morphism P −→ S:

P Y

S

Morphisms are morphisms of G-bundles compatible with the maps to Y . Note that there is a
canonical morphism Y −→ [G\Y ] sending f : S −→ Y to the trivial bundle G× S −→ S with
the equivariant map G× S −→ Y given by (g, t) 7−→ g · f(t).

This allow us to uniformise the moduli stack of complex tori.

Theorem 3.4. The morphism π : H −→Man corresponding to the family X −→ H of Example
5 factors through H −→ [SL2(Z)\H] and defines an equivalence of categories

[SL2(Z)\H] Man.

Sketch of proof. Let (P −→ S, P −→ H) be an object of [SL2(Z)\H]. Since P −→ S is locally
trivial, we can find an open covering S =

⋃
i Si with sections σi : Si −→ P . By composing with

the SL2(Z)-equivariant map P −→ H, we get maps fi : Si −→ H. Let Xi −→ Si be the family
of complex tori defined as the pullback

Xi X

Si H

ϕi

fi

�

We now observe that the Xi −→ Si glue into a family X −→ S. Indeed, because P −→ S
is a principal bundle, for any (i, j) there is a unique γij ∈ SL2(Z) such that γijσj = σi over
Sij = Si ∩ Sj ; by equivariance of P −→ H, we get

γijfj = fi

over Sij . Now, γij defines an automorphism in Man:

X X

H H

ϕγij

γij

�
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which pulls back to a morphism

Xi|Sij Xj |Sij

Sij

ϕij

satisfying ϕγij ◦ ϕj = ϕi ◦ ϕij . By gluing along the maps ϕij we obtain a family X −→ S. This
defines our sought morphism [SL2(Z)\H] −→Man.

To prove that [SL2(Z)\H] −→ Man is an equivalence we exhibit a quasi-inverse, but we
leave the necessary verifications to the reader. To a family of complex tori p : X −→ S, we can
associate a locally constant sheaf

R1p∗ZX = Hom(R1p∗ZX ,ZS)

whose stalk at each s ∈ S is the group H1(Xs,Z). This comes with a symplectic Z-bilinear
pairing

〈 , 〉 : R1p∗ZX ×R1p∗ZX −→ ZS

whose stalk at each s ∈ S is the intersection product on H1(Xs,Z). We can then consider a
principal SL2(Z)-bundle P −→ S whose fibre at s ∈ S is

Ps = Isom((H1(Xs,Z), 〈 , 〉s), (Z⊕2, 〈 , 〉std)),

where 〈(m,n), (m′, n′)〉std = mn′ −m′n is the standard symplectic pairing. Finally, a SL2(Z)-
equivariant map P −→ H is defined, at the fibre of s ∈ S, by

p ∈ Ps 7−→

∫
γ2(p) ω∫
γ1(p) ω

∈ H,

where γ1(p), γ2(p) is the basis of H1(Xs,Z) corresponding to to the standard basis (1, 0), (0, 1)
of Z⊕2 via p, and ω is an arbitrary element of Γ(Xs,Ω

1).

Remark 3. It follows from the above proof that H is a ‘fine moduli space’ for pairs (X, (γ1, γ2)),
where X is a complex torus and (γ1, γ2) is a symplectic basis of H1(X,Z) with respect to the
intersection product. That is, H is equivalent to the category over (C-manifolds) whose objects
are families of complex tori p : X −→ S with a symplectic trivialisation of R1p∗ZX . The
universal family over H (i.e., the object corresponding to idH) is the complex torus X −→ H
with the symplectic trivialisation whose fibre at τ ∈ H corresponds to the symplectic basis (1, τ)
of Z + Zτ ∼= H1(Xτ ,Z).

4 Hodge bundle and modular forms

We say that a diagram

A B

C

f

h g

of morphisms between categories over (C-manifolds) commutes if it is given an isomorphism of
functors h ∼= g ◦ f .
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Definition 4.1. A quasi-coherent sheaf F over Man is the following data.

1. For every morphism ϕ : S −→Man corresponding to a family X −→ S, a quasi-coherent
sheaf ϕ∗F on S.

2. For every commutative diagram

S′ S

Man

f

ϕ′ ϕ

an isomorphism αf : (ϕ′)∗F ∼−→ f∗ϕ∗Fp satisfying the following cocycle relations: given
a commutative diagram

S′′ S′ S

Man

f ′

ϕ′′
ϕ′

f

ϕ

we have

αf◦f ′ = αf ′ ◦ (f ′)∗αf : (ϕ′′)∗F ∼−→ (f ◦ f ′)∗ϕ∗F = (f ′)∗(f∗ϕ∗F).

A global section of s of F is a family of global sections ϕ∗s ∈ Γ(S, ϕ∗F), for each morphism
S −→Man such that, given a morphism f : S′ −→ S as above, we have αf ((ϕ′)∗s) = ϕ∗s. We
denote the C-vector space of global sections by Γ(Man,F).

Modular forms are related to the following example of quasi-coherent sheaf.

Example 8 (Hodge bundle). Given a morphism ϕ : S −→ Man corresponding to a family of
complex tori p : X −→ S, we set ϕ∗F := p∗Ω

1
X/S . It follows the ‘cohomology and base change

theorems’ (see [1, II.5]) that ϕ∗F is a line bundle (invertible sheaf) over S whose fibre at each
s ∈ S is the space of global holomorphic 1-forms Γ(Xs,Ω

1), and that the formation of ϕ∗F
commutes with every base change in S. This defines a quasi-coherent sheaf F on Man.

Let k ∈ Z and consider a global section s ∈ Γ(Man,F⊗k). It gives in particular a global
section

π∗s ∈ Γ(H, π∗F⊗k)

corresponding to the family X −→ H of Example 5. The line bundle π∗F over H can be
trivialized by a global section

ω ∈ Γ(H, π∗F)

whose fibre at each τ ∈ H is the 1-form ω(τ) = 2πi dz on the complex torus Xτ = C/(Z + τZ).
Thus there exists a unique holomorphic function f : H −→ C such that

π∗s = fω⊗k.

Now, since π∗s comes from a global section overMan, the function f is not arbitrary. For every
γ ∈ SL2(Z), we have an automorphism

X X

H H

ϕγ

γ

�
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in the category Man, where ϕγ,τ : Xτ −→ Xγτ is given by multiplication by (cτ + d)−1 (see
Example 4). Since we must have γ∗π∗s = π∗s under the natural identifications, and since
γ∗ω = (cτ + d)−1ω, we conclude that

f(γτ)(cτ + d)−kω⊗k = f(τ)ω⊗k.

Thus f satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(
a b
c d

)
∈ SL2(Z). (2)

We showed that to any global section s ∈ Γ(Man,F⊗k) we can associate a holomorphic
function f : H −→ C satisfying the modularity property (2).

Theorem 4.2. If f : H −→ C is a holomorphic function satisfying (2), then there exists a
unique global section s ∈ Γ(Man,F⊗k) such that π∗s = fω⊗k.

Proof. For the existence, let ϕ : S −→Man be a morphism corresponding to a family of complex
tori p : X −→ S. Consider the corresponding object (P −→ S, P −→ H) corresponding to
p : X −→ S via Theorem 3.4. Since P −→ S is locally trivial, we can cover S by open subsets
Si with sections of P −→ S, whose composition with the equivariant map P −→ H gives maps
fi : Si −→ H. We set si = f∗i (fω⊗k) and we use the modularity of f to check that si glue to a
section ϕ∗s ∈ Γ(S, ϕ∗F).

For the unicity, we use again the fact that, locally over S, every ϕ : S −→ Man factors
through π : H −→Man (Theorem 3.4).

To give a geometric interpretation of the condition at infinity in the defintion of a modular
form, we must compactify the moduli stack Man. For simplicity, let us just mention that a
‘neighborhood at infinity’ in the compactification Man

is given by the Tate family.

Example 9 (Tate family of complex tori). Let Z act on C∗ ×D∗ by n · (t, q) = (tqn, q). This
action is proper and free, and the quotient gives a 2-dimensional complex manifold T with a
proper holomorphic map T −→ D∗. In fact, this is a family of complex tori whose fibre at
q ∈ D∗ is Tq = C∗/qZ. Moreover, there is a morphism in Man

X T

H D∗

ϕ

q

�

where q(τ) = e2πiτ and ϕτ : Xτ
∼−→ Tq(τ) is given by z 7−→ e2πiz.

Note that the 1-form dt/t on C∗ descends to a non-zero element of Γ(Tq(τ),Ω
1) which pulls

back to ω(τ) = 2πidz on Xτ via the above isomorphism. Let

πT : D∗ −→Man

be the morphism corresponding to the Tate family and ωT be the trivialisation of π∗TF whose
fibre at each q ∈ D∗ is the 1-form ωT(q) = dt/t on Tq. If s ∈ Γ(Man,F⊗k) corresponds to
f : H −→ C via π∗s = fω⊗k, then

π∗Ts = (
∑
n∈Z

anq
n)ω⊗kT
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where
f(τ) =

∑
n∈Z

anq
n, q = e2πiτ .

We say that s is holomorphic at infinity if an = 0 for every n < 0. We conclude that a modular
form of weight k is a global section of F⊗k over Man which is holomorphic at infinity.

Remark 4. Given a suitable definition of the compactification Man
, one can show that the

Hodge bundle F extends to a quasi-coherent sheaf F onMan
, and that a section s ∈ Γ(Man,F⊗k)

is holomorphic at infinity if and only if it extends to Γ(Man
,F⊗k).

References

[1] D. Mumford, Abelian varieties. With appendices by C. P. Ramanujam and Yuri Manin. Cor-
rected reprint of the second (1974) edition. Tata Institute of Fundamental Research Studies
in Mathematics, 5. Published for the Tata Institute of Fundamental Research, Bombay; by
Hindustan Book Agency, New Delhi, 2008.

[2] M. Olsson, Algebraic spaces and stacks. American Mathematical Society Colloquium Publi-
cations, 62. American Mathematical Society, Providence, RI, 2016.

[3] J.-P. Serre, A course in arithmetic. Translated from the French. Graduate Texts in Mathe-
matics, No. 7. Springer-Verlag, New York-Heidelberg, 1973.

11


