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1 The cohomology H1
dR(M, Symk−2H)

We’ve seen in the last lecture that to every family of elliptic curves p : E −→ S we can associate
the relative de Rham cohomology H1

dR(E/S). Moreover, the formation of the relative de Rham
cohomology is compatible with every base change in S. This allows us to make the following
definition.

Definition 1.1. The de Rham bundle overM is the quasi-coherent sheaf H overM such that
ϕ∗H = H1

dR(E/S) for a morphism ϕ : S −→ M corresponding to a family of elliptic curves
p : E −→ S.

Note that the Hodge bundle F is a subsheaf of H: given ϕ : S −→ M as above, ϕ∗F =
p∗Ω

1
E/S is the first step of the Hodge filtration on ϕ∗H = H1

dR(E/S).

Remark 1. Global sections of tensor powers of the Hodge bundle correspond to modular forms,
what can we say about SymkH? Note that F⊗k is a subbundle of the symmetric power SymkH.
In fact, global sections of SymkH are related to quasimodular forms (which include modular
forms). Consider the Eisentein series

E2(τ) = 1− 24
∑
n≥1

σ1(n)qn, q = e2πiτ .

It’s a quasimodular form:

E2(γτ) = (cτ + d)2E2(τ) +
12c

2πi
(cτ + d), γ ∈ SL2(Z).
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Recall from the second lecture that we can trivialise π∗H by ω and ∇Dω. They satisfy the
following transformation rules with respect to the action of SL2(Z):

γ∗ω = (cτ + d)−1ω, γ∗(∇Dω) = (cτ + d)∇Dω −
c

2πi
ω.

One can check that E2ω
2 +12ω∇Dω is invariant under the action of SL2(Z), so that there exists

a unique s ∈ Γ(M,Sym2H) such that

π∗s = E2ω
2 + 12ω∇Dω.

In general, if s is any global section of SymkH, we can write

π∗s = fkω
k + fk−1ω

k−1∇Dω + · · ·+ f0(∇Dω)k

where fk is a quasimodular form of weight k which completely determines s.

We have also seen that the relative de Rham cohomology is equipped with the Gauss-Manin
connection. To define it over M, we need the following lemma. Let πn : Mn −→ M be the
morphism given by the modular curve Mn as defined in the last lecture.

Lemma 1.2. There is a unique quasi-coherent sheaf Ω1
M/Q overM such that π∗nΩ1

M/Q = Ω1
Mn/Q

for every n ≥ 3.

Proof. SinceM = [GL2(Z/nZ)\Mn], given a morphism ϕ : S −→M, there is an open covering
S =

⋃
i Si and ϕi : Si −→Mn such that πn ◦ϕi ∼= ϕ. Since the sheaf Ω1

Mn/Q is stable under the

action of GL2(Z/nZ), we can glue the sheaves ϕ∗iΩ
1
Mn/Q over Si to a sheaf ϕ∗Ω1

M/Q over S.

Since the formation of the Gauss-Manin connection is also compatible with base change, the
Gauss-Manin connection ∇ : H1

dR(E/Mn) −→ H1
dR(E/Mn)⊗ Ω1

Mn/Q ‘descends’ to a morphism

∇ : H −→ H⊗ Ω1
M/Q

Note that this is not OM -linear, but only Q-linear.
We can also perform multilinear operations on connections, so we also have a connection on

symmetric powers of H. In what follows, we want to compute the following space:

H1
dR(M, Symk−2H) := coker(Symk−2H ∇−→ Symk−2H⊗ Ω1

M/Q)

Remark 2. The Q-vector space H1
dR(M, Symk−2H) can also be recovered as the GL2(Z/nZ)-

invariant subspace of

H1
dR(Mn, π

∗
nSymk−2H) := coker(Symk−2H1

dR(E/Mn)
∇−→ Symk−2H1

dR(Mn/Q)⊗ Ω1
Mn/Q)

In general, given a smooth scheme X over a field k and a vector bundle with integrable connec-
tion (E ,∇) on X, the nth algebraic de Rham cohomology with coefficients in E is the k-vector
space Hn

dR(X, E) = Hn(X, E ⊗ Ω•X/k), where E ⊗ Ω•X/k is a complex induced by ∇ (see [5]). If

X is affine, than Hn
dR(X, E) boils down to the cohomology of the complex of global sections

Γ(X, E ⊗ Ω•X/k). This explains our ad-hoc definition above.

For the next theorem, let M !
k = Γ(M,F⊗k) denote the Q-space of weakly holomorphic

modular forms of weight k over Q. Recall that these are holomorphic functions f : H −→ C,
modular of weight k, and whose Fourier series is of the form

f(τ) =
∑

n�−∞
anq

n, q = e2πiτ

with an ∈ Q.
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Theorem 1.3. For every even k ≥ 2, we have

H1
dR(M, Symk−2H) ∼= M !

k/D
k−1M !

2−k

where D = 1
2πi

d
dτ = q ddq .

In general, the derivative of a modular form is not modular: if f(γτ) = (cτ + d)kf(τ), then

Df(γτ) = (cτ + d)k+2Df(τ) + 2πikc(cτ + d)k+1f(τ).

It is true however that, if f ∈M !
2−k, then Dk−1f = D(D(· · ·D(f) · · · )) is modular of weight k.

This is a consequence of the so-called ‘Bol’s identity’, but it also follows from the proof of the
above theorem.

Before proving Theorem 1.3, we consider some examples. For this, we will also use the
following notation:

• Mk is the space of modular forms of weight k over Q,

• S!
k ≤M !

k is the subspace of weakly holomorphic cuspforms of weight k over Q, defined by
the condition a0(f) = 0,

• Sk = Mk ∩ S!
k is the space of cuspforms of weight k over Q.

We shall also consider the normalised Eisenstein series (k ≥ 4 even)

Ek(τ) = (2ζ(k))−1Gk(τ) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn ∈Mk

and Ramanujan’s delta:

∆(τ) =
1

1728
(E4(τ)3 − E6(τ)2) = q

∏
n≥1

(1− qn)24 ∈ S12

This product formula for the q-expansion of ∆ is a theorem (see [8] Chapter 7, Theorem 6, or
[9] 2.4). It implies in particular that ∆ has no zeroes on H, so we have, for instance,

∆−1 ∈M !
−12.

The basic tool for studying spaces of modular forms is the following ‘valence formula’.

Theorem 1.4. For every f ∈M !
k, we have

ord∞(f) +
∑

p∈SL2(Z)\H

ordp(f)

ep
=

k

12

where ep = 2 (resp. ep = 3) if p = SL2(Z) · i (resp. p = SL2(Z) · e
2πi
3 ), and ep = 1 otherwise.

For a proof, see [8] Chapter 7, Theorem 3, or [9] Proposition 2. Under an appropriate
framework, this can be seen as a consequence of the Riemann-Roch formula for tensor powers
of the Hodge bundle over the compactification M.
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Example 1 (k = 2). We have

H1
dR(M) = H1

dR(M,Sym0H) = M !
2/DM

!
0 = 0.

Note that

j(τ) =
E4(τ)3

∆(τ)
=

1

q
+ 744 + 196884q + · · · ∈M !

0.

In fact, it follows from the valence formula that

M !
0 = Q[j].

To see this, note that jn ∈ M !
0 and ord∞(jn) = −n for every n ≥ 0. If f ∈ M !

0 has a pole of
order n at infinity, by solving a linear system, we can find a polynomial P (j) ∈ Q[j] of degree
n such that f − P (j) is holomorphic at infinity. But it follows from the valence formula that
M0 = 0, so that f = P (j).

Note that Dj = −q−1 + 196884q + · · · is in M !
2. Again, by the valence formula, we have

M2 = 0, and we conclude similarly that

M !
2 = Q[Dj] = DM !

0

This proves that H1
dR(M, Sym0H) = 0.

Example 2 (k = 4). We have

H1
dR(M, Sym2H) = M !

4/D
3M !
−2 = Q · [E4]

By the valence formula, we have S4 = 0, so that M4 = Q · [E4]. For every n ≥ 1, we can
construct an element of M !

−2 having a pole of order n at infinity, namely, E12n−2/∆
n. Thus,

given any f ∈M !
4 with ord∞(f) = −n, we can find a λi ∈ Q such that

f −
n∑
i=1

λiD
3(E12i−2/∆

i) ∈M4 = QE4

On the other hand, E4 is not in the image of D3 since it a0(E4) 6= 0. This proves that
M !

4 = QE4 ⊕D3M !
−2.

Similarly, we prove that H1
dR(M, Symk−2H) = Q · [Ek] for k = 6, 8, 10, 14, because in these

cases Sk = 0 (again, by the valence formula).

Example 3 (k = 12). We have

H1
dR(M, Sym10H) = M !

12/D
11M !

−10 = Q · [E12]⊕ S!
12/D

11M !
−10

and
S!

12/D
11M !

−10 = Q · [∆]⊕Q · [∆′]
where

∆′ =
1

q
+ 47709536q2 + 39862705122q3 + 7552626810624q4 + · · ·

is the unique element of S!
12 having a simple pole at infinity and such that a1 = 0. To construct

∆′, consider jE12, then add to it a suitable combination of E12 and ∆. To see that the image
of ∆ and ∆′ in the quotient S!

12/D
11M !

−10 generate it as a Q-vector space, we note that for
every n ≥ 2, we can construct an element of D11M !

−10 with a pole of order n at infinity, namely,
D11(E12n−10/∆

n), and we argue as in the last example. Finally, (Q∆+Q∆′)∩D11M !
−10 because

the valence formula guarantees that there’s no element of M !
−10 having at most a simple pole

at infinity.
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In general, we have

M !
k/D

k−1M !
2−k = Q · [Ek]⊕ S!

k/D
k−1M !

2−k

The subspace S!
k/D

k−1M !
2−k of M !

k/D
k−1M !

2−k also has a geometric interpretation in terms of
cuspidal (or parabolic) cohomology:

H1
dR,cusp(M, Symk−2H) ∼= S!

k/D
k−1M !

2−k

This cohomology space shares some similarities with the first cohomology of a smooth projective
curve.

Theorem 1.5. Let k ≥ 2 be an even integer.

1. We have
dimQ S

!
k/D

k−1M !
2−k = 2 dimQ Sk < +∞

2. The pairing

S!
k × S!

k −→ Q, (f, g) 7−→
∑
n∈Z

an(f)a−n(g)

nk−1

induces a symplectic Q-bilinear pairing on S!
k/D

k−1M !
2−k for which Sk ↪→ S!

k/D
k−1M !

2−k
is an isotropic subspace.

Proof. See [4] for a direct elementary proof. Using that S!
k/D

k−1M !
2−k is a cohomology group,

this statement can also be deduced from general geometric considerations.

The analogy with the cohomology of a smooth projective curve X is that Sk corresponds to
the subspace of holomorphic forms H0(X,Ω1) ⊂ H1

dR(X) (the Hodge filtration), and the above
pairing corresponds to the cup product. For instance, for an elliptic curve E, the decomposition
of

H1
dR(E) = Q · [dx/y]⊕Q · [xdx/y]

in terms of forms of the ‘first kind’ dx/y and of the ‘second kind’ xdx/y corresponds to the
decomposition

H1
dR,cusp(M, Sym10H) = Q · [∆]⊕Q · [∆′]

of Example 3.

Remark 3. Formally, one can show that H1
dR,cusp(M, Symk−2H) ∼= S!

k/D
k−1M !

2−k underlies a

polarisable pure Hodge of type {(k − 1, 0), (0, k − 1)} such that F k−1 ∼= Sk.

2 Proof of the main theorem

We want to prove

coker(Symk−2H ∇−→ Symk−2H⊗ Ω1
M/Q) ∼= coker(M !

2−k
Dk−1

−→ M !
k) (1)

Our proof will be based on the Kodaira-Spencer isomorphism. To explain it, we need the
de Rham pairing

〈 , 〉dR : H⊗H −→ OM
which is an alternating and perfect OM-linear pairing on H, defined in terms of the de Rham
cup product. It is characterised by the following property. If ϕ : S −→ M is a morphism
correponding to a family of elliptic curves p : E −→ S which admits a Weierstrass equation,
then

〈dx/y, xdx/y〉dR = 1.
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Theorem 2.1. The map

κ : F⊗2 ∼−→ Ω1
M/Q, s1 ⊗ s2 7−→ 〈s1,∇s2〉dR

is an isomorphism of quasi-coherent sheaves on OM.

Proof. To see that κ is indeed OM-linear, we compute

〈s1,∇(gs2)〉dR = 〈s1, s2 ⊗ dg + g∇s2〉dR = 〈s1, s2〉dR ⊗ dg + g〈s1,∇s2〉dR

Note that 〈s1, s2〉dR = 0 because 〈 , 〉dR is alternating and both s1 and s2 are sections of the same
line bundle F ⊂ H. To check that κ is an isomorphism, it suffices to do it after pulling back to H
via π : H −→Man. Recall from last lecture that ∇Dω = η− E2

12 ω, and that ω and η correspond
to dx/y and xdx/y for some Weierstrass equation for X −→ H. Thus 〈ω,∇Dω〉dR = 1, and we
have

〈ω,∇ω〉dR = 2πi dτ

As ω trivialises π∗F and 2πi dτ trivialises Ω1
H, κ is an isomorphism.

It follows from the Kodaira-Spence isomorphism that

M !
k
∼−→ Γ(M,F⊗k−2 ⊗ Ω1

M/Q) ⊂ Γ(M, Symk−2H⊗ Ω1
M/Q)

f 7−→ fω⊗k−2 ⊗ 2πi dτ

Thus, (1) is equivalent to the following assertions:

1. Γ(M,F⊗k−2 ⊗ Ω1) + im∇ = Γ(M,Symk−2H⊗ Ω1)

2. Γ(M,F⊗k−2 ⊗ Ω1) ∩ (im∇) ∼= Dk−1M !
2−k

To prove 1, we use the following lemma.

Lemma 2.2. The Gauss-Manin connection induces isomorphisms

∇ : F p/F p+1 ∼−→ F p−1/F p ⊗ Ω1

In particular,
∇ : F 1 ∼−→ F 0/F k−2 ⊗ Ω1

Proof. It suffices to prove the corresponding statement after pulling back to H. Since ωp(∇Dω)k−2−p+
π∗F p+1 trivialises π∗(F p/F p+1) and that

∇(ωp(∇Dω)k−2−p) = ∇D(ωp(∇Dω)k−2−p)⊗ 2πi dτ = pωp−1(∇Dω)k−1−p)⊗ 2πi dτ ,

we conclude that∇ sends a trivialisation of π∗(F p/F p+1) to a trivialisation of π∗(F p−1/F p)⊗Ω1
H,

so that it is an isomorphism. The last statement follows by considering the splitting π∗F 1 =
π∗(F 1/F 2)⊕ · · · ⊕ π∗(F k−3/F k−2)⊕ π∗F k−2 given by (ω,∇Dω).

Thus, given α ∈ Γ(M, F 0 ⊗Ω1), there’s β ∈ Γ(M, F k−2 ⊗Ω1) and s ∈ Γ(M, F 1) such that

α = β +∇s

This proves the statement 1 above.
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To prove 2, let s ∈ Γ(M, Symk−2H) be such that ∇s ∈ Γ(M, F k−2 ⊗ Ω1). By pulling back
to H, we get an equation of the form

∇(sk−2ω
k−2 + sk−3ω

k−3∇Dω + · · ·+ s0(∇Dω)k−2) = fωk−2 ⊗ 2πi dτ (2)

where si : H −→ C are holomorphic functions and f : H −→ C is a weakly holomorphic modular
form of weight k. Equation (2) is equivalent to

∇D(sk−2ω
k−2 + sk−3ω

k−3∇Dω + · · ·+ s0(∇Dω)k−2) = fωk−2.

By applying the Leibniz rule to the left-hand side, we get

D(sk−2)ωk−2 + (D(sk−3) + (k − 2)sk−2)ωk−3∇Dω + · · ·+ (D(s1) + s0)(∇Dω)k−2 = fωk−2

so that D(sk−2) = f and

D(sj−1) + jsj = 0, j = 1, . . . , k − 2

By induction, we get

f =
1

(k − 2)!
Dk−1(s0).

To finish, we remark that s0 ∈ M !
2−k. This follows immediately from the fact that π∗s =∑

i siω
i(∇Dω)k−2−i is SL2(Z)-invariant, and from the explicit description of the action of SL2(Z)

on ω and ∇Dω given in Remark 1.

Remark 4. Alternatively, to see that s0 ∈M !
2−k
∼= Γ(M, (F⊗k−2)∨), we note that the pairing

〈 , 〉dR induces an isomorphism

F 0/F k−3 ∼−→ (F k−2)∨, t 7−→ 〈 , t〉dR

and that s as above is sent to s0〈 , (∇Dω)k−2〉dR = s0(ωk−2)∨.

3 Periods and the Eichler-Shimura isomorphism

We briefly discuss the relation between the above constructions and the more classical Eichler
cohomology groups. For this, consider the Q-vector space of homogeneous polynomials of degree
n with Q-coefficients:

Vn = Symn(QX + QY )

with the right SL2(Z)-action:

(X,Y )|γ = (aX + bY, cX + dY ), γ =

(
a b
c d

)
We can then consider the group cohomology

H1(SL2(Z), Vn) =
{c : SL2(Z)→ Vn ; c(γ1γ2) = c(γ1)|γ2 + c(γ2)}

{c : SL2(Z)→ Vn ; c(γ) = v|γ − v, for some v ∈ Vn}

Given τ0 ∈ H and f ∈Mk, we can define a 1-cocyle cf : SL2(Z) −→ Vk−2 by the formula

cf (γ) = (2πi)k−1

∫ τ0

γ−1τ0

f(τ)(X − τY )k−2dτ

Different choices of τ0 yield cohomologous cocycles.

7



Example 4. If f ∈ Sk, we can rather can take τ0 =∞. The period polynomial of f is defined
as

cf (S) = (2πi)k−1

∫ ∞
0

f(τ)(X − τY )k−2dτ ∈ C[X,Y ], S =

(
0 −1
1 0

)
It’s coefficients are the periods of f (up to some normalisation):∫ ∞

0
f(it)tmdt, 0 ≤ m ≤ k − 2

and we have seen in the first lecture (at least when f = ∆) that they compute the special values
of L(f, s) at the critical strip.

The theorem of Eichler-Shimura asserts that

(Mk ⊗ C)⊕ (Sk ⊗ C)
∼−→ H1(SL2(Z), Vk−2)⊗ C, (f, g) 7−→ cf + cg

is an isomorphism of C-vector spaces. In particular,

dimH1(SL2(Z), Vk−2) = dimH1
dR(M,Symk−2H) = 1 + 2 dimSk

and it’s natural to ask what is the relation between these two cohomology groups. Geometri-
cally, a vector space with an SL2(Z)-action gives rise to a local system overMan ∼= [SL2(Z)\H];
the cohomology of Man with coefficients in this local system coincides with the group co-
homology H1(SL2(Z), Vk−2). In other words, H1(SL2(Z), Vk−2) is the ‘Betti counterpart’ of
H1

dR(M,Symk−2H) ∼= M !
k/D

k−1M !
2−k. Indeed, there is a comparison isomorphism

comp : (M !
k/D

k−1M !
2−k)⊗ C ∼−→ H1(SL2(Z), Vk−2)⊗ C, f 7−→ [cf ]

Under the this interpretation, the Eichler-Shimura isomorphism is simply describing the Hodge
decomposition on H1(SL2(Z), Vk−2)⊗ C.

There’s also a cuspidal version

comp : S!
k/D

k−1M !
2−k ⊗ C ∼−→ H1

par(SL2(Z), Vk−2)⊗ C

where H1
par(SL2(Z), Vk−2) is given by cocyles that vanish on T =

(
1 1
0 1

)
. This ‘parabolic

cohomology group’ is what is most often called the Eichler cohomology.

Example 5. Consider the cuspidal comparison isomorphism for k = 12. It gives rise to a period
matrix of the form(

ω+
∆ iη+

∆

ω−∆ iη−∆

)
=

(
−68916772.809... i127202100647.177...
−5585015.379... i10276732343.649...

)
The numbers ω+

∆ and ω−∆ are ‘the’ periods of ∆. The integrals
∫∞

0 ∆(it)tmdt are multiples of
ω±∆; in fact, there are P+, P− ∈ Q[X,Y ] such that

(2πi)11

∫ ∞
0

∆(τ)(X − τY )10dτ = ω+
∆P

+ + ω−∆P
−

The numbers η±∆ can be called the quasi-periods of ∆, in analogy with the elliptic curves
terminology. They are not well studied in the literature.
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4 Final remarks

• The proof we gave for the isomorphism H1
dR(M,SymkH) ∼= M !

k/D
k−1M !

2−k is close to
the arguments found in [2]. See also the recent papers [6] and [1]. For a more direct study
of M !

k/D
k−1M !

2−k, see [4].

• Quasi-periods of modular forms seem to have been first introduced in [1].

• S!
12/D

11M !
−10 and H1

par(SL2(Z), V10) are the de Rham and Betti realisations of a motive

M∆. In general, Hecke theory splits S!
k/D

k−1M !
2−k and H1

par(SL2(Z), Vk) into realisations
of motives of Hecke cuspforms. For motives of modular forms, see [7].
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