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1 The cohomology Hl,(M,Sym" ?H)

We’ve seen in the last lecture that to every family of elliptic curves p : E — S we can associate
the relative de Rham cohomology Hy (E/S). Moreover, the formation of the relative de Rham
cohomology is compatible with every base change in S. This allows us to make the following
definition.

Definition 1.1. The de Rham bundle over M is the quasi-coherent sheaf H over M such that
©*H = Hz(E/S) for a morphism ¢ : S — M corresponding to a family of elliptic curves
p: E—S.

Note that the Hodge bundle F is a subsheaf of H: given ¢ : S — M as above, p*F =
p*Q}E/S is the first step of the Hodge filtration on ¢*H = Hls (E/S).

Remark 1. Global sections of tensor powers of the Hodge bundle correspond to modular forms,
what can we say about Sym* #? Note that F®* is a subbundle of the symmetric power Sym"* #.
In fact, global sections of Sym* # are related to quasimodular forms (which include modular
forms). Consider the Eisentein series

Ey(r)=1-— 24201(n)q”, q=emr.
n>1
It’s a quasimodular form:

Ey(y7) = (e + d)*Eq (1) + %(CT +d), v € SLy(Z).

™
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Recall from the second lecture that we can trivialise 7*H by w and Vpw. They satisfy the
following transformation rules with respect to the action of SLa(Z):

Yw = (er +d) " lw, v (Vpw) = (et +d)Vpw — QLm,w.

One can check that Fow? 4+ 12wV pw is invariant under the action of SLy (Z), so that there exists
a unique s € T'(M, Sym? #H) such that

*s = Eyw? + 120V pw.
In general, if s is any global section of Sym* #, we can write
s = frw® + fo_1w* 'WVWpw+ - + fo(VD(,u)]’C
where f}, is a quasimodular form of weight k£ which completely determines s.

We have also seen that the relative de Rham cohomology is equipped with the Gauss-Manin
connection. To define it over M, we need the following lemma. Let m, : M, — M be the
morphism given by the modular curve M,, as defined in the last lecture.

Lemma 1.2. There is a unique quasi-coherent sheaf Q}\A/Q over M such that TI';;Q}M/Q = Q}wn/@

for every n > 3.

Proof. Since M = [GLa(Z/nZ)\M,], given a morphism ¢ : S — M, there is an open covering
S =, Si and ¢; : S; — M,, such that m, o p; = ¢. Since the sheaf Q}\/[n/@ is stable under the

action of GLa(Z/nZ), we can glue the sheaves ‘p?Q}\/[n/Q over S; to a sheaf QO*Q}\A/Q over S. O

Since the formation of the Gauss-Manin connection is also compatible with base change, the

Gauss-Manin connection V : Hiz (E/M,) — Hz(E/M,) ® Q}MH/Q ‘descends’ to a morphism

ViH—HOYy g

Note that this is not Ops-linear, but only Q-linear.
We can also perform multilinear operations on connections, so we also have a connection on
symmetric powers of H. In what follows, we want to compute the following space:

H}p (M, Sym*~2H) = coker(Sym*?# ~, Sym* ?H ® Q}v{/@)

Remark 2. The Q-vector space Hlp(M,Sym* ?H) can also be recovered as the GLy(Z/nZ)-
invariant subspace of

Hip(M,, i Sym*=2H) := coker(Sym* 2H}g (E/M,,) —~ Sym" 2 H} (M, /Q) ® QY /o)

In general, given a smooth scheme X over a field k and a vector bundle with integrable connec-
tion (£,V) on X, the nth algebraic de Rham cohomology with coefficients in £ is the k-vector
space Hl(X,€) = H'(X, £ ® Q}/k), where £ @ 1%, is a complex induced by V (see [5]). If
X is affine, than H; (X, €) boils down to the cohomology of the complex of global sections

N'X,&® QB{/’C) This explains our ad-hoc definition above.

For the next theorem, let M,L = F(M,F®k) denote the Q-space of weakly holomorphic
modular forms of weight k£ over Q. Recall that these are holomorphic functions f : H — C,
modular of weight k, and whose Fourier series is of the form

f@ =Y ang”, q=€TT
n>>>—oo
with a, € Q.



Theorem 1.3. For every even k > 2, we have
Hip(M,Sym*=2H) = M} /D*hy

—1d_,d
where D = 5~ = dqg-

In general, the derivative of a modular form is not modular: if f(y7) = (er + d)* f(7), then
Df(y7) = (et + d)*2Df () + 2mike(er + d)FH (7).

It is true however that, if f € M, ,, then D*~1f = D(D(--- D(f)---)) is modular of weight k.
This is a consequence of the so-called ‘Bol’s identity’, but it also follows from the proof of the
above theorem.

Before proving Theorem 1.3, we consider some examples. For this, we will also use the
following notation:

e M; is the space of modular forms of weight k over Q,

° S,!g <M ,'c is the subspace of weakly holomorphic cuspforms of weight k£ over Q, defined by
the condition ag(f) = 0,

e S, =M.N S/,!c is the space of cuspforms of weight k£ over Q.

We shall also consider the normalised Eisenstein series (k > 4 even)
Bi(r) = (20(k) 'Gi(T) =1 = 2= op_1(n)q" € My,

and Ramanujan’s delta:

1

A7) = Fag (B = Bs(r)*) = a [](1 = ") € S

n>1

This product formula for the g-expansion of A is a theorem (see [8] Chapter 7, Theorem 6, or
[9] 2.4). Tt implies in particular that A has no zeroes on H, so we have, for instance,

-1 !
AT e M_y,.
The basic tool for studying spaces of modular forms is the following ‘valence formula’.

Theorem 1.4. For every f € M,!c, we have

Ordw(f) + =5
p€eSLa(Z)\H

where e, =2 (resp. e, =3) if p=SLo(Z) - i (resp. p = SLa(Z) - e%), and e, = 1 otherwise.

For a proof, see [8] Chapter 7, Theorem 3, or [9] Proposition 2. Under an appropriate
framework, this can be seen as a consequence of the Riemann-Roch formula for tensor powers
of the Hodge bundle over the compactification M.



Example 1 (k = 2). We have
Hlg(M) = Hlg (M, Sym®H) = M/DM, = 0.

Note that (r)?
. Ey(t 1 1
= = - 44 4+ 1 4 <€ M.
J(r) NG . + 744 +196884q + - - - € M,
In fact, it follows from the valence formula that

To see this, note that j» € M} and orde(j*) = —n for every n > 0. If f € M} has a pole of
order n at infinity, by solving a linear system, we can find a polynomial P(j) € Q[j] of degree
n such that f — P(j) is holomorphic at infinity. But it follows from the valence formula that
My = 0, so that f = P(j).

Note that Dj = —g~! 4 196884¢ + --- is in MQ' Again, by the valence formula, we have
My = 0, and we conclude similarly that

M; = Q[Dj] = DM
This proves that Hlp (M, Sym® H) = 0.
Example 2 (k =4). We have
Hig (M, Sym*H) = My /D*M_, = Q- [E4]

By the valence formula, we have Sy = 0, so that My = Q - [E4]. For every n > 1, we can
construct an element of M!_Q having a pole of order n at infinity, namely, Ej9,—2/A™. Thus,
given any f € M} with orde(f) = —n, we can find a \; € Q such that

f = ND3Eri_o/A") € My = QE;
=1

On the other hand, E, is not in the image of D? since it ag(F;) # 0. This proves that
M} = QE, ® D3M",.

Similarly, we prove that Hls (M, SymF~2H) = Q- [Ey] for k = 6,8,10, 14, because in these
cases S = 0 (again, by the valence formula).

Example 3 (k = 12). We have
Hig(M,Sym'"H) = Mj,/DV' M g = Q- [E1] ® Sjo/D"' M4,

and
5!12/D11M!—10 =Q-[Al®Q-[A]
where )
A = = 4+ 47709536¢% + 39862705122¢> + 7552626810624¢* + - - -
q

is the unique element of S!12 having a simple pole at infinity and such that a; = 0. To construct
A/, consider jF2, then add to it a suitable combination of E15 and A. To see that the image
of A and A’ in the quotient Sj,/D''M',, generate it as a Q-vector space, we note that for
every n > 2, we can construct an element of DllM!_10 with a pole of order n at infinity, namely,
D' (E12,_10/A™), and we argue as in the last example. Finally, (QA+QA’)ND'M* |, because
the valence formula guarantees that there’s no element of M!_10 having at most a simple pole
at infinity.



In general, we have
My /DM M5y = Q- [Er] @ Sp/ DM M;

The subspace S,!f/Dk_lMQLk of M,L/Dk_lMQ!f,C also has a geometric interpretation in terms of
cuspidal (or parabolic) cohomology:

H&R,cusp(M’ Symk_2H) = Sllc/Dk_lMé—k‘

This cohomology space shares some similarities with the first cohomology of a smooth projective
curve.

Theorem 1.5. Let k > 2 be an even integer.

1. We have
dimg Si./D* 1M, , = 2dimg Sy, < +o0
2. The pairing
an(fla_n(g
Shxsh— 0 (fg) o Y Denlo)
nez
induces a symplectic Q-bilinear pairing on S,!f/Dk_lMé_k for which Sy — S,!C/Dk_lMé_k
is an isotropic subspace.

Proof. See [4] for a direct elementary proof. Using that S}ﬁ / Dk_lMéf i 1s a cohomology group,
this statement can also be deduced from general geometric considerations. O

The analogy with the cohomology of a smooth projective curve X is that S}, corresponds to
the subspace of holomorphic forms HY(X, Q') C H};(X) (the Hodge filtration), and the above
pairing corresponds to the cup product. For instance, for an elliptic curve E, the decomposition
of

Hip(E) = Q- [dz/y] & Q- [xdz/y]
in terms of forms of the ‘first kind’ dz/y and of the ‘second kind’ xdx/y corresponds to the
decomposition
HéR,cusp(M’ SymloH) =Q- [A] eQ- [A/]
of Example 3.

Remark 3. Formally, one can show that H, éR,Cusp(M’ SymF~2 ) = S} /D*~1 M), underlies a
polarisable pure Hodge of type {(k — 1,0), (0,k — 1)} such that Fk=1 = G;.

2 Proof of the main theorem
We want to prove

coker(Sym*~2H v, Sym**H ® Q}Vl/@) >~ coker(M,_,, ZAT M) (1)

Our proof will be based on the Kodaira-Spencer isomorphism. To explain it, we need the
de Rham pairing
(, )R HOH — Opm

which is an alternating and perfect Ops-linear pairing on H, defined in terms of the de Rham
cup product. It is characterised by the following property. If ¢ : § — M is a morphism
correponding to a family of elliptic curves p : E — S which admits a Weierstrass equation,
then

(dx/y, xdx/y)ar = 1.



Theorem 2.1. The map
K:F®2L>Q}VI/Q’ 81®52r—><81,V82>dR
is an isomorphism of quasi-coherent sheaves on Opy.

Proof. To see that x is indeed O y-linear, we compute

(51, V(gs2))ar = (51,52 ® dg + gV s2)dar = (51, 52)ar ® dg + g(s1, Vs2)ar

Note that (s1, s2)qr = 0 because ( , )qr is alternating and both s and s, are sections of the same
line bundle F C H. To check that « is an isomorphism, it suffices to do it after pulling back to H

via 7 : HL — M?®". Recall from last lecture that Vpw =n— %w, and that w and 7 correspond

to dz/y and xdx/y for some Weierstrass equation for X — H. Thus (w, Vpw)qr = 1, and we
have
<w, Vw)dR = 2midr

As w trivialises 7*F and 27i d7 trivialises Q%_[, K is an isomorphism.

It follows from the Kodaira-Spence isomorphism that
Mj, = T(M, F"2 @ Q) o) € T(M, Sym" *H @ Q) 0)
fr— fw® 2@ 2ridr

Thus, (1) is equivalent to the following assertions:

1. DM, F&2 20l +imV = (M, Sym* 2 H @ Q')

2. DM, F&* 20NN (imV) = DM,

To prove 1, we use the following lemma.
Lemma 2.2. The Gauss-Manin connection induces isomorphisms

V. FP/FPTl = prolEP g Of

In particular,
V:F' S P PR el

Proof. It suffices to prove the corresponding statement after pulling back to H. Since wP(V pw)*~27P4
7* FPHL trivialises 7% (FP/FPT1) and that

V(WP (Vpw)k=27P) = Vp(wP(Vpw)* "27P) @ 21i dr = pwP Y (Vpw)*~17P) @ 27i dr,

we conclude that V sends a trivialisation of 7*(FP/FPT!) to a trivialisation of 7*(FP~!/FP)@QL,
so that it is an isomorphism. The last statement follows by considering the splitting 7* F! =
T (FYF?) @ - @ 7" (FF3/FF2) @ 7* %2 given by (w, Vpw). O

Thus, given a € (M, F° @ Q1), there’s 8 € T(M, F¥2® Q') and s € I'(M, F!) such that
a=LF+Vs

This proves the statement 1 above.



To prove 2, let s € T'(M, Sym*~2H) be such that Vs € T'(M, F*¥=2 ® Q). By pulling back
to H, we get an equation of the form

V(sk—ow" 2 + 553w 3V pw + -+ + 50(Vpw)F2) = fwh 2 @ 2midr (2)

where s; : H — C are holomorphic functions and f : H — C is a weakly holomorphic modular
form of weight k. Equation (2) is equivalent to

VD(sk,gwk_Q + 553w 3Vpw+ - + SO(VDw)k_Q) = fwh2.
By applying the Leibniz rule to the left-hand side, we get
D(sk,g)wk_2 + (D(sk—3) + (k — Z)Sk,Q)wk_?’VDw +--4+(D(s1) + so)(VDw)k_2 = fwh?
so that D(si_2) = f and
D(sj_1)+jsj =0, j=1,... k-2

By induction, we get
Dk_l(So).

-~ (k=2)!

To finish, we remark that sg € Mé_k. This follows immediately from the fact that n*s =
>, siwt(Vpw)*~271 is SLy(Z)-invariant, and from the explicit description of the action of SLy(Z)
on w and Vpw given in Remark 1.

Remark 4. Alternatively, to see that so € M} , = T'(M, (F®¥~2)V), we note that the pairing
(, )dar induces an isomorphism

FO/Fk—3 AN (lec—Q)\/7 t— < 7t>dR

and that s as above is sent to so( , (Vpw)*2)qr = so(wF2)V.

3 Periods and the Eichler-Shimura isomorphism

We briefly discuss the relation between the above constructions and the more classical Eichler
cohomology groups. For this, consider the Q-vector space of homogeneous polynomials of degree
n with Q-coefficients:

V= Sym"(QX + QY)

with the right SLa(Z)-action:

(X.Y)ly = (X +BY,eX +dY), 4= ( ’ 3)

We can then consider the group cohomology

_ A{e:8SLa(Z) = Vi s c(n2) = c()lye + c(12)}
H'(SLa(Z), Va) = {c¢:SLy(Z) = Vi 5 e() = v|y — v, for Zome v eV}

Given 19 € H and f € M}, we can define a 1-cocyle cf : SLa(Z) — Vi_2 by the formula

70

¢r() = (2mi)F! / F)X = 7Y)E2dr

v~ 110

Different choices of 7y yield cohomologous cocycles.



Example 4. If f € S, we can rather can take 79 = co. The period polynomial of f is defined
as

cr(8) = (i) [T fEX -7y ar Xyl oS- < - )
It’s coefficients are the periods of f (up to some normalisation):
/OOO Fat)tmdt,  0<m<k-—2
and we have seen in the first lecture (at least when f = A) that they compute the special values

of L(f,s) at the critical strip.

The theorem of Eichler-Shimura asserts that
(M, ® C) & (5, © C) — H'(SLy(Z), Vi2) ®C,  (f,9) —> cs+¢g
is an isomorphism of C-vector spaces. In particular,
dim H*(SLy(Z), Vi o) = dim H)g (M, Sym*~?H) = 1 + 2dim S},

and it’s natural to ask what is the relation between these two cohomology groups. Geometri-
cally, a vector space with an SLy(Z)-action gives rise to a local system over M®" = [SLy(Z)\H];
the cohomology of M®" with coefficients in this local system coincides with the group co-
homology H'(SL2(Z),Vj_2). In other words, H'(SLs(Z),Vj_2) is the ‘Betti counterpart’ of
Hlp (M, Sym*~2H) = Mé/DkilMé_k. Indeed, there is a comparison isomorphism

comp : (M}/D* 1M} ) ® C =5 HY(SLy(Z), Vi—_s) ® C, f— eyl

Under the this interpretation, the Eichler-Shimura isomorphism is simply describing the Hodge
decomposition on H*(SLy(Z), Vj,_2) ® C.
There’s also a cuspidal version

comp : Sy /D" 'Mj_, ® C =5 HJ, (SLa(Z), Vi) ® C

11
01
cohomology group’ is what is most often called the Eichler cohomology.

where H}, (SLa(Z),Vi_2) is given by cocyles that vanish on T' =

par

> . This ‘parabolic

Example 5. Consider the cuspidal comparison isomorphism for k = 12. It gives rise to a period
matrix of the form

wh ink \ [ —68916772.809... i127202100647.177...
wxy iny )\ —5585015.379...  i10276732343.649...

The numbers w} and w, are ‘the’ periods of A. The integrals Iy~ A(it)t™dt are multiples of
wZk; in fact, there are PT, P~ € Q[X, Y] such that

(2mi) 1! /0 A(T)(X — 1Y) 07 = w Pt +w P~

The numbers ni can be called the quasi-periods of A, in analogy with the elliptic curves
terminology. They are not well studied in the literature.



4 Final remarks
e The proof we gave for the isomorphism H}y(M,Sym"H) = M} /D*'M; | is close to
the arguments found in [2]. See also the recent papers [6] and [1]. For a more direct study
of M} /DF-1M, , . see [4].
e Quasi-periods of modular forms seem to have been first introduced in [1].
e Siy/D"M",, and H]..(SLy(Z), Vio) are the de Rham and Betti realisations of a motive
Ma. In general, Hecke theory splits S} /D¥~1 M, , and Héar(SLg(Z), Vi) into realisations
of motives of Hecke cuspforms. For motives of modular forms, see [7].
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